We fix a field k, and a field extension ℓ / k.
Let V be a k-vector space. Consider the ℓ-vector space \tilde{V} on the basis $\left(e_{v}, v \in\right.$ $V)$. Let $V \otimes_{k} \ell$ be the quotient of \tilde{V} by the ℓ-subspace generated by the elements

$$
\left\{\begin{array}{l}
\lambda e_{v}-e_{\lambda v} \quad \text { for } \lambda \in k, v \in V \\
e_{u+v}-e_{u}-e_{v} \quad \text { for } u, v \in V
\end{array}\right.
$$

For $\mu \in \ell$ and $v \in V$, we denote by $v \otimes \mu \in V \otimes_{k} \ell$ the image of μe_{v}.
Exercise 1. Let V be a k-vector space and W an ℓ-vector space. Let $f: V \rightarrow W$ a k-linear map. Show that there exists a unique ℓ-linear map

$$
g: V \otimes_{k} \ell \rightarrow W
$$

such that $g(v \otimes 1)=f(v)$ for all $v \in V$.

Exercise 2. Let V be a k-vector space. Show that the map $V \rightarrow V \otimes_{k} \ell$ given by $v \mapsto v \otimes 1$ is k-linear and injective. (Hint: injectivity is more subtle point.)

Exercise 3. Let V be a k-vector space, and assume that e_{1}, \ldots, e_{n} is a k-basis of V. Show that $e_{1} \otimes 1, \ldots, e_{n} \otimes 1$ is an ℓ-basis of $V \otimes_{k} \ell$, and deduce that $\operatorname{dim}_{k} V=\operatorname{dim}_{\ell}\left(V \otimes_{k} \ell\right)$.

Exercise 4. Let V, W be a k-vector spaces, and $f: V \rightarrow W$ a k-linear map.
(i) Show that f induces an ℓ-linear map $g: V \otimes_{k} \ell \rightarrow W \otimes_{k} \ell$.
(ii) If f is surjective, show that g is surjective.
(iii) If f is injective, show that g is injective.

Exercise 5. Let A be a k-algebra.
(i) Show that $A \otimes_{k} \ell$ is a naturally an ℓ-algebra.
(ii) Let B be an ℓ-algebra, and $f: A \rightarrow B$ be a morphism of k-algebras. Show that the induced ℓ-linear map $A \otimes_{k} \ell \rightarrow B$ is a morphism of ℓ-algebras.

Exercise 6. (i) Let V, W be k-vector spaces. Show that

$$
(V \oplus W) \otimes_{k} \ell \simeq\left(V \otimes_{k} \ell\right) \oplus\left(W \otimes_{k} \ell\right)
$$

as ℓ-vector spaces.

Olivier Haution
(ii) Let A, B be k-algebras. Show that

$$
(A \times B) \otimes_{k} \ell \simeq\left(A \otimes_{k} \ell\right) \times\left(B \otimes_{k} \ell\right)
$$

as ℓ-algebras.

Exercise 7. (i) Show that $(k[X]) \otimes_{k} \ell \simeq \ell[X]$ as ℓ-algebra.
(ii) Let A be a k-algebra and I an ideal of A. Show that $I \otimes_{k} \ell$ may be viewed as an ideal of $A \otimes_{k} \ell$, and that $(A / I) \otimes_{k} \ell \simeq\left(A \otimes_{k} \ell\right) /\left(I \otimes_{k} \ell\right)$.
(iii) Let $P \in k[X]$, and $A=k[X] / P$. Show that the ℓ-algebra $A \otimes_{k} \ell$ is naturally isomorphic to $\ell[X] / P$.

Exercise 8. Let A be a k-algebra.
(i) If A is an integral domain, is $A \otimes_{k} \ell$ an integral domain? Give a proof or a counterexample.
(ii) If A is reduced, is $A \otimes_{k} \ell$ reduced? Give a proof or a counterexample.

Recall that an element x in a (commutative) ring A is called irreducible if $x \notin A^{\times}, x \neq 0$, and for all $a, b \in A$

$$
x=a b \Longrightarrow a \in A^{\times} \text {or } b \in A^{\times} .
$$

Exercise 1. When A is a (commutative) ring, we say that an element $p \in A$ is prime if $p A$ is a nonzero prime ideal of A.
(i) Assume that A is a domain. Show that every prime element of A is irreducible.
(ii) Assume that A is a principal ideal domain. Show that every irreducible element of A is prime. (Hint: Show that the ideal generated by an irreducible is maximal.)

Exercise 2. Let A be a principal ideal domain. Let $a \in A$ be such that $a \neq 0$ and $a \notin A^{\times}$.
(i) Show that there exist irreducible elements p_{1}, \ldots, p_{n} in A such that

$$
a=p_{1} \ldots p_{n}
$$

(Hint: Consider the set of ideals generated by elements $a \notin A^{\times} \cup\{0\}$ which admit no such decomposition, and use the fact that A is noetherian.)
(ii) Show that the elements p_{1}, \ldots, p_{n} are uniquely determined by a, up to their ordering and multiplication by units of A.

Exercise 3. We are going to solve the equation

$$
y^{3}=x^{2}+1, \quad \text { with } x, y \in \mathbb{Z}
$$

We consider the ring of Gaussian integers $\mathbb{Z}[i]$.
(i) Show that the element $1+i$ is prime in $\mathbb{Z}[i]$.
(ii) Let $x \in \mathbb{Z}$. Let us pick $d \in \mathbb{Z}[i]$ such that $d \mathbb{Z}[i]$ is the ideal generated by $x-i$ and $x+i$. Show that $d=u(1+i)^{n}$, where $u \in \mathbb{Z}[i]^{\times}$, and $n \in\{0,1,2\}$.
(iii) Assume that $x, y \in \mathbb{Z}$ are such that $x^{2}+1=y^{3}$. Show that the ideal generated by $x+i$ and $x-i$ in $\mathbb{Z}[i]$ is the whole ring $\mathbb{Z}[i]$.
(iv) Find all solutions to the equation

$$
y^{3}=x^{2}+1, \quad \text { with } x, y \in \mathbb{Z}
$$

Exercise 4. Let $\pi \in \mathbb{Z}[i]$ be a prime element. Show that there exists a prime number $p \in \mathbb{N}$ such that $\mathrm{N}(\pi)=p$ or $\mathrm{N}(\pi)=p^{2}$. (Here $\mathrm{N}: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ is the norm function defined in the lectures.)

Exercise 5. Consider an integer $x \in \mathbb{N}$, and its prime decomposition in \mathbb{Z}

$$
n=\prod_{p} p^{v_{p}(n)}
$$

where p runs over the prime numbers, and $v_{p}(n) \in \mathbb{N}$.

Show that the following conditions are equivalent:
(a) there exist $a, b \in \mathbb{N}$ such that $n=a^{2}+b^{2}$,
(b) for each prime number p congruent to 3 modulo 4 , the integer $v_{p}(n)$ is even.
(Hint: Use the previous exercise.)

Exercise 6. Let $p \in \mathbb{N}$ be a prime number.
(i) If $p=2$, show that $p \in \mathbb{Z}[i]$ can be written as $p=a b$ where $a, b \in \mathbb{Z}[i]$ are prime elements generating the same ideal in $\mathbb{Z}[i]$.
(ii) If $p=3 \bmod 4$, then $p \in \mathbb{Z}[i]$ is a prime element. (Hint: Use the results from the lectures.)
(iii) If $p=1 \bmod 4$, then $p \in \mathbb{Z}[i]$ can be written as $p=a b$, where $a, b \in \mathbb{Z}[i]$ are prime elements generating different ideals in $\mathbb{Z}[i]$.

Exercise 1. Show that the polynomial ring $\mathbb{Z}[X]$ is not a principal ideal domain.

Exercise 2. Let A be a nonzero noetherian ring, and M a free A-module of rank n. If m is an integer such that the A-module M is free of rank m, show that $m=n$. (Hint: consider a maximal ideal of A.)

Exercise 3. Let A be a domain, and $P \in A[X]$ a polynomial. Show that $A[X] / P$ is integral over A if and only if the leading coefficient of the polynomial P is a unit in A.

Exercise 4. Let A be a domain having only finitely many elements. Show that A is a field.

Exercise 5. Let A be a domain, with fraction field K. Let L be a field extension of K having finite degree, and B the integral closure of A in L. Show that L is the fraction field of B.

Exercise 6. Let $A \subset R$ be a ring extension. Consider the following conditions
(a) the extension $A \subset R$ is integral,
(b) the A-module R is finitely generated.

Does (a) implies (b)? Does (b) implies (a)? (Justify your answers, either with a proof, reference to the lecture, or counterexample). Same questions when the A-algebra R is additionally assumed to be finitely generated.

Exercise 7. (Time permitting) We let $\sqrt{-5} \in \mathbb{C}$ be one of the roots of the polynomial $X^{2}+5$, and consider the subset

$$
R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C} .
$$

Show that R is a subring of \mathbb{C}, and that R is not a principal ideal domain. (Hint: Assuming that R is a principal ideal domain, consider a prime decomposition of $1+\sqrt{-5}$.)

Exercise 8. (Time permitting) Let K be a quadratic field.
(i) Let $\sigma: K \rightarrow K$ the nontrivial morphism of \mathbb{Q}-algebras. Express the maps

$$
\operatorname{Tr}_{K / \mathbb{Q}}: K \rightarrow \mathbb{Q} \quad \text { and } \quad \mathrm{N}_{K / \mathbb{Q}}: K \rightarrow \mathbb{Q}
$$

in terms of σ.
(ii) Show that $\mathrm{N}_{K / \mathbb{Q}}\left(\mathcal{O}_{K}\right) \subset \mathbb{Z}$.

Exercise 1. Let A, B be rings. Show that every ideal of the $\operatorname{ring} A \times B$ is of the form $I \times J$, where $I \subset A$ and $J \subset B$ are ideals.

Exercise 2. Let k be a field. A k-algebra is called diagonalisable if it is isomorphic to k^{n}, for some integer $n \in \mathbb{N}$.
(i) Show that a finite-dimensional k-algebra A is diagonalisable if and only if the k-vector space of linear forms $\operatorname{Hom}_{k}(A, k)$ is generated by morphisms of k-algebras.
(ii) Deduce that every k-subalgebra of a diagonalisable k-algebra is diagonalisable.
(iii) Show that every diagonalisable k-algebra is generated by idempotent elements as a k-vector space. (Recall that an element x in a ring R is called idempotent if $x^{2}=x$.)
(iv) Let $\left(e_{1}, \ldots, e_{n}\right)$ be the canonical k-basis of k^{n}. For $I \subset\{1, \ldots, n\}$, set

$$
e_{I}=\sum_{i \in I} e_{i}
$$

Show that every idempotent of k^{n} is of the form e_{I} for some $I \subset\{1, \ldots, n\}$.
(v) Deduce that a diagonalisable k-algebra admits only finitely many k-subalgebras.

Exercise 3. Let A be a k-algebra. We assume that there exists a field extension ℓ / k such that the ℓ-algebra $A \otimes_{k} \ell$ is diagonalisable. Show that the k-algebra A is étale. (N.B.: the converse was established in the lectures).

Exercise 4. Let k be a field, and A an étale k-algebra. (Hint for the questions below: Use the two previous exercises.)
(i) Let $B \subset A$ be a k-subalgebra. Show that B is an étale k-algebra.
(ii) Let C be a quotient k-algebra of A (i.e. $C=A / I$ for some ideal I of A). Show that the k-algebra C is étale.
(iii) Show that the k-algebra A admits only finitely many subalgebras and quotient algebras.
(iv) Assume that k is infinite. Show that there exists a separable polynomial $P \in k[X]$ such that $A \simeq k[X] / P$. (Hint: to show that A is generated by a single element as a k-algebra, recall that no k-vector space is a finite union of proper subspaces.)

Exercise 5. Let L / K be a field extension of finite degree. We are going to prove that the following conditions are equivalent:
(a) The K-algebra L is generated by a single element,
(b) There exist only finitely many subextensions of L / K.

We proceed as follows:
(i) Show that (b) implies (a). (Hint: Treat the cases k finite and infinite using different arguments.)
(ii) Assume that $L=K(\alpha)$ for some $\alpha \in L$. Let E / K be a subextension of L / K, and let

$$
P=X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in E[X]
$$

be the minimal polynomial of α over E. Show that $E=K\left(a_{0}, \ldots, a_{d-1}\right)$.
(iii) Show that in (ii) the image of P in $L[X]$ can take only finitely many values, as E / K varies (the element α being fixed).
(iv) Deduce that (a) implies (b).

Exercise 1 (Gauss Lemma). Let A be a principal ideal domain, and K its fraction field. When $P \in A[X]$ is a polynomial, we define its content $\operatorname{cont}(P)$ as the ideal generated in A by its coefficients.
(i) Let $R \in A[X]$. Show that there exists $\alpha \in A$ and $\widetilde{R} \in A[X]$ such that $\operatorname{cont}(R)=\alpha A$ and $R=\alpha \widetilde{R}$.
(ii) Let $P, Q \in A[X]$ be such that $\operatorname{cont}(P)=\operatorname{cont}(Q)=A$. Show that $\operatorname{cont}(P Q)=$ A. (Hint: Consider a prime ideal \mathfrak{p} of A, and show that $P Q \notin \mathfrak{p} A[X]$.)
(iii) Let $P, Q \in A[X]$. Show that $\operatorname{cont}(P Q)=\operatorname{cont}(P) \operatorname{cont}(Q)$.
(iv) Let K be the fraction field of A, and $P \in A[X]$ be such that $\operatorname{cont}(P)=A$. Deduce that P is irreducible in $A[X]$ if and only if it is irreducible in $K[X]$.

Exercise 2. Let A be an integrally closed domain with fraction field K. Let L / K be a finite field extension. Consider an element $\alpha \in L$, and let $P \in K[X]$ be its minimal polynomial over K. Show that α is integral over A if and only if $P \in A[X]$.

Exercise 3. Let $a, b \in \mathbb{Q}$ be such that the polynomial $P=X^{n}+a X+b$ is irreducible in $\mathbb{Q}[X]$. Let $\alpha \in \mathbb{C}$ be a root of P, and $K=\mathbb{Q}(\alpha)$. Show that

$$
\mathrm{D}_{K / \mathbb{Q}}\left(1, \alpha, \ldots, \alpha^{n-1}\right)=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}+a^{n}(1-n)^{n-1}\right)
$$

Exercise 4. Let $P=X^{3}+X+1 \in \mathbb{Z}[X]$.
(i) Show that the polynomial P is irreducible in $\mathbb{Q}[X]$.
(ii) Let $\alpha \in \mathbb{C}$ be a root of P, and consider the subfield $K=\mathbb{Q}(\alpha) \subset \mathbb{C}$. Show that $[K: \mathbb{Q}]=3$ and that $\alpha \in \mathcal{O}_{K}$.
(iii) Show that $\left(1, \alpha, \alpha^{2}\right)$ is a \mathbb{Z}-basis of \mathcal{O}_{K}. (Hint: Use the previous exercise.)

Exercise 5. (Optional) Let $n \geq 2$ be an integer, and $\xi \in \mathbb{C}$ a primitive n-th root of unity. Let $P \in \mathbb{Q}[X]$ be the minimal polynomial of ξ over \mathbb{Q}. Let

$$
\Phi_{n}=\prod_{k \in S}\left(X-\xi^{k}\right)
$$

where $S \subset\{1, \ldots, n\}$ is the set of elements k with $\operatorname{gcd}(k, n)=1$. We are going to prove that $P=\Phi_{n}$

We let p be prime number, and denote $Q \mapsto \bar{Q}$ the reduction modulo p map $\mathbb{Z}[X] \rightarrow \mathbb{F}_{p}[X]$. Let $F \in \mathbb{Q}[X]$ be the minimal polynomial of ξ^{p} over \mathbb{Q}.
(i) Show that $P, F \in \mathbb{Z}[X]$.
(ii) Show that \bar{F} and \bar{P} have a common irreducible divisor in $\mathbb{F}_{p}[X]$. (Hint: consider the polynomial $G=P\left(X^{p}\right) \in \mathbb{Z}[X]$.)
(iii) Assume that the prime number p does not divide n. Show that $F=P$.
(iv) Deduce that $\Phi_{n} \mid P$ in $\mathbb{Q}[X]$.
(v) Show that

$$
\Phi_{n}=\prod_{d \mid n} \Phi_{d}
$$

and deduce that $\Phi_{n} \in \mathbb{Z}[X]$.
(vi) Conclude.

Exercise 1. Let k be a field. Show that $k[X, Y]$ is not a Dedekind domain.

Exercise 2. Let k be a field, and consider the subring $A=k\left[X^{2}, X^{3}\right]$ of the polynomial ring $k[X]$.
(i) Show that A is a noetherian domain, and that every nonzero prime ideal of A is maximal. (Hint: Use the inclusions $k\left[X^{2}\right] \subset A \subset k[X]$.)
(ii) Let $k(X)$ be the fraction field of $k[X]$. Show that $k(X)$ is the fraction field of A.
(iii) Show that A is not a Dedekind domain.

Exercise 3 (Approximation Lemma). Let A be a Dedekind domain, with fraction field K. For a nonzero prime ideal \mathfrak{q} of A, and a element $y \in K$, we define

$$
v_{\mathfrak{q}}(y)=\sup \left\{n \in \mathbb{Z} \mid y \in \mathfrak{q}^{n}\right\} \in \mathbb{Z} \cup\{\infty\}
$$

(i) For $a, b \in A$ and \mathfrak{q} a nonzero prime ideal of A, show that

$$
v_{\mathfrak{q}}(a+b) \geq \min \left\{v_{\mathfrak{q}}(a), v_{\mathfrak{q}}(b)\right\} \quad \text { and } \quad v_{\mathfrak{q}}(a b)=v_{\mathfrak{q}}(a)+v_{\mathfrak{q}}(b) .
$$

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be pairwise distinct nonzero prime ideals of A. Let $x_{1}, \ldots, x_{s} \in$ K and $n_{1}, \ldots, n_{s} \in \mathbb{N}$. We are going to prove that we may find $x \in K$ such that $v_{\mathfrak{p}_{i}}\left(x-x_{i}\right) \geq n_{i} \quad$ for $i \in\{1, \ldots, s\}, \quad$ and $\quad v_{\mathfrak{q}}(x) \geq 0 \quad$ for $\mathfrak{q} \notin\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\} . \quad(*)$
(ii) If $s \geq 2$, show that $\mathfrak{p}_{1}^{n_{1}}+\mathfrak{p}_{2}^{n_{2}} \cdots \mathfrak{p}_{s}^{n_{s}}=A$.
(iii) Show that we may find $x \in A$ satisfying (*) when $x_{1} \in A$ and $x_{2}=\cdots=$ $x_{s}=0$.
(iv) Show that we may find $x \in A$ satisfying ($*$) when $x_{1}, \ldots, x_{s} \in A$.
(v) Show that we may find $x \in K$ satisfying (*).

Exercise 4. (Optional) Let A be a Dedekind domain.
(i) Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be pairwise distinct nonzero prime ideals of A. Let $n_{1}, \ldots, n_{s} \in$ \mathbb{N}. Show that we may find an element $x \in A$ such that $v_{\mathfrak{p}_{i}}(x)=n_{i}$ for all $i \in\{1, \ldots, s\}$. (Hint: Use the previous exercise.)
(ii) Show that every ideal of A is generated by at most two elements.
(iii) Assume that A has only finitely prime ideals. Reprove (using (i)) that A is a principal ideal domain.

Exercise 1. Let K be a number field, and $I \subset \mathcal{O}_{K}$ a nonzero ideal such that $\mathrm{N}(I)=\operatorname{card}\left(\mathcal{O}_{K} / I\right)$ is a prime number. Show that the ideal I is prime.

Exercise 2. Let K be a number field and \mathfrak{p} a nonzero prime ideal of \mathcal{O}_{K}. Show that $\mathrm{N}(\mathfrak{p})=\operatorname{card}\left(\mathcal{O}_{K} / \mathfrak{p}\right) \in \mathbb{N}$ is a power of a prime number.

Exercise 3. Let A be a local noetherian domain. Assume that the maximal ideal \mathfrak{m} of A is principal. We assume that A is not a field.
(i) Show that $\bigcap_{n \in \mathbb{N}} \mathfrak{m}^{n}=0$.
(ii) Let K be the fraction field of A, and $\pi \in A$ a generator of \mathfrak{m}. Show that every element $x \in K \backslash\{0\}$ is of the form $x=\pi^{n} u$ for unique elements $u \in A^{\times}$and $n \in \mathbb{Z}$.
(iii) Deduce that A is a discrete valuation ring.

Exercise 4. Let A be a discrete valuation ring with fraction field K. Let π be a uniformising parameter of A. Let $\mathfrak{m}=\pi A$ be the maximal ideal of A, and $k=A / \mathfrak{m}$. We denote by $P \mapsto \bar{P}$ the reduction map $A[X] \rightarrow k[X]$.
(i) Let $Q \in A[X]$ be such that $\bar{Q} \neq 0$ in $k[X]$. If $U \in K[X]$ is such that $Q U \in A[X]$, show that $U \in A[X]$.

We now let $P \in A[X]$ be a monic polynomial such that $\bar{P} \in k[X]$ is irreducible, and consider the ring $B=A[X] / P$.
(ii) Show that the ring B is a domain. (Hint: use (i)).
(iii) Show that the ring B is a discrete valuation ring, with uniformising parameter π. (Hint: Use Exercise 3.)
(iv) Let

$$
Q=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}, \text { with } a_{0}, \ldots, a_{n-1} \in A
$$

Assume that a_{0} is a uniformising parameter of A, and that $a_{0} \mid a_{i}$ for all $i=1, \ldots, n-1$. Show that $C=A[X] / Q$ is a discrete valuation ring, where the class of X is a uniformising parameter. (Hint: This is not a direct consequence of (iii).)

Exercise 1. Let A be a domain, and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ prime ideals of A.
(i) Show that the set $S=A \backslash\left(\mathfrak{p}_{1} \cup \cdots \cup \mathfrak{p}_{n}\right)$ is multiplicatively closed.
(ii) Assume that $\mathfrak{p}_{i} \not \subset \mathfrak{p}_{j}$ for all $i \neq j$. Show that the ring $S^{-1} A$ possesses n maximal ideals.

Exercise 2. Let A be a Dedekind domain. We are going to prove that every ideal of A is generated by at most two elements.
(i) Let $x \in A$ be a nonzero element. Show that x is contained in only finitely many prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ of A.
(ii) Let $S=A \backslash\left(\mathfrak{p}_{1} \cup \cdots \cup \mathfrak{p}_{n}\right)$. Show that the ring $S^{-1} A$ is a principal ideal domain. (Hint: use the previous exercise.)
(iii) Show that for any $s \in S$, we have $s A+x A=A$.
(iv) Show that we have a ring isomorphism $A / x A \xrightarrow{\sim}\left(S^{-1} A\right) /\left(x S^{-1} A\right)$.
(v) Deduce that every ideal of $A / x A$ is principal.
(vi) Conclude that every ideal of A is generated by at most two elements.

Exercise 3. Let A be a Dedekind domain, and $S \subset A$ a multiplicatively closed subset. Show that mapping a nonzero fractional ideal I of A to $S^{-1} I$ induces a surjective group morphism $\mathcal{C}(A) \rightarrow \mathcal{C}\left(S^{-1} A\right)$ between the ideal class groups.

Exercise 4. Let A be a Dedekind domain, and $f \in A$ a nonzero element. Consider the multiplicatively closed subset $S=\left\{f^{n} \mid n \in \mathbb{N}\right\}$ in A, and let r be the number of prime ideals of A containing f (recall from Exercise 2 (i) that $r<\infty$).
(i) Let Q be the kernel of the natural morphism $\mathcal{F}(A) \rightarrow \mathcal{F}\left(S^{-1} A\right)$ (where $\mathcal{F}(A), \mathcal{F}\left(S^{-1} A\right)$ denote the respective groups of nonzero fractional ideals). Show that the \mathbb{Z}-module Q is free of rank r.
(ii) By considering the morphism

$$
\left(S^{-1} A\right)^{\times} \rightarrow \mathcal{F}(A), \quad x \mapsto x A
$$

show that the \mathbb{Z}-module $\left(S^{-1} A\right)^{\times} / A^{\times}$is free of rank $\leq r$.

Exercise 5 (Optional). Let B be a noetherian domain, and $A \subset B$ a subring such that B is integral over A. If \mathfrak{p} is a prime ideal of A, show that there exists a prime ideal \mathfrak{q} of B such that $\mathfrak{q} \cap A=\mathfrak{p}$. (This is called the "going-up" theorem.)

Exercise 1. Let K be an imaginary quadratic field. Show that the group $\left(\mathcal{O}_{K}\right)^{\times}$ is finite and cyclic. (A more precise answer is obtained in Exercise 5 below).

Exercise 2. Let K be a real quadratic field. We fix an embedding $K \subset \mathbb{R}$.
(i) Show that $\left(\mathcal{O}_{K}\right)^{\times} \simeq \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})$.
(ii) Deduce that the subset of units in \mathcal{O}_{K} which are >0 is a free \mathbb{Z}-module of rank 1 , which admits a unique generator u such that $u>1$. This element u is called the fundamental unit of K.

Exercise 3. Let $K=\mathbb{Q}(\sqrt{d})$ be a real quadratic field, where $d \in \mathbb{N} \backslash\{0,1\}$ is square-free. We view K as a subfield of \mathbb{R}. In this exercise, we describe a procedure to determine explicitly the fundamental unit of K (see the previous exercise).
(i) Let $x \in\left(\mathcal{O}_{K}\right)^{\times}$, and write $x=a+b \sqrt{d}$, with $a, b \in \mathbb{Q}$. Show that $a^{2} \geq b^{2}$. (Hint: the number $a^{2}-d b^{2}$ can only take two values...)
(ii) Let $x \in\left(\mathcal{O}_{K}\right)^{\times}$, and write $x=a+b \sqrt{d}$, with $a, b \in \mathbb{Q}$. Show that

$$
(x>1) \Longleftrightarrow(a>0 \text { and } b>0)
$$

(Hint: If $x>1$, observe that x is the unique maximal element of the set $\left.\left\{x, x^{-1},-x,-x^{-1}\right\}.\right)$
(iii) Assume that $d=2,3 \bmod 4$. Show that the fundamental unit of K can be written as $a_{1}+b_{1} \sqrt{d}$ with $a_{1}, b_{1} \in \mathbb{N} \backslash\{0\}$. Let $x=a+b \sqrt{d} \in\left(\mathcal{O}_{K}\right)^{\times}$, with $a, b \in \mathbb{N} \backslash\{0\}$. Show that $b \geq b_{1}$, and that $b=b_{1}$ implies $a=a_{1}$.
(Hint: consider the sequences $a_{n}, b_{n} \in \mathbb{N} \backslash\{0\}$ defined by $\left(a_{1}+b_{1} \sqrt{d}\right)^{n}=$ $a_{n}+b_{n} \sqrt{d}$.)
(iv) Assume that $d=2,3 \bmod 4$. Let $b \in \mathbb{N} \backslash\{0\}$ be the smallest integer such that $d b^{2}-1$ or $d b^{2}+1$ is of the form a^{2} with $a \in \mathbb{N} \backslash\{0\}$. Show that $a+b \sqrt{d}$ is the fundamental unit of K.
(v) Assume that $d=1 \bmod 4$. Show that the fundamental unit of K can be written as $\frac{1}{2}\left(a_{1}+b_{1} \sqrt{d}\right)$ with $a_{1}, b_{1} \in \mathbb{N} \backslash\{0\}$. Let $x=a+b \sqrt{d} \in\left(\mathcal{O}_{K}\right)^{\times}$, with $a, b \in \mathbb{N} \backslash\{0\}$. Show that $b \geq b_{1}$. Assume that $b=b_{1}$ and $a \neq a_{1}$. Show that $d=5$, that $a_{1}=b_{1}=1$ and $a=3$.
(Hint: consider the sequences $a_{n}, b_{n} \in \mathbb{N} \backslash\{0\}$ defined by $\left(\frac{1}{2}\left(a_{1}+b_{1} \sqrt{d}\right)\right)^{n}=$ $\frac{1}{2}\left(a_{n}+b_{n} \sqrt{d}\right)$, and analyse the conditions under which $b_{2}=b_{1}$.)
(vi) Assume that $d=1 \bmod 4$ with $d \neq 5$. Let $b \in \mathbb{N} \backslash\{0\}$ be the smallest integer such that $d b^{2}-4$ or $d b^{2}+4$ is of the form a^{2} with $a \in \mathbb{N} \backslash\{0\}$. Show that $\frac{1}{2}(a+b \sqrt{d})$ is the fundamental unit of K.
(vii) Determine the fundamental units of the following quadratic fields:

$$
\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{6}), \mathbb{Q}(\sqrt{17})
$$

Exercise 4 (Pell's equation). (i) Let $d \in \mathbb{N} \backslash\{0,1\}$ be square-free. Show that the set of solutions $x, y \in \mathbb{N}$ to the equation

$$
x^{2}-d y^{2}=1
$$

is $\left\{\left(x_{n}, y_{n}\right) \mid n \in \mathbb{N}\right\}$, where

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n} .
$$

(Hint: Use the previous exercise.)
(ii) Determine $\left(x_{1}, y_{1}\right)$ when $d \in\{2,5,6,17\}$.

Exercise 5. Let K be an imaginary quadratic number field. Show that

$$
\left(\mathcal{O}_{K}\right)^{\times}= \begin{cases}\{1,-1, i,-i\} & \text { if } K=\mathbb{Q}(i), \\ \left\{1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right\}, \text { where } \alpha=\frac{1+\sqrt{-3}}{2} & \text { if } K=\mathbb{Q}(\sqrt{-3}) \\ \{1,-1\} & \text { otherwise. }\end{cases}
$$

Exercise 1. Let K be a number field.
(i) Show that there exists a monic irreducible polynomial $P \in \mathbb{Z}[X]$ and a root $\alpha \in \mathbb{C}$ such that $K=\mathbb{Q}(\alpha)$.

For the rest of the exercise, we assume that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. For $a, b \in \mathcal{O}_{K}$, we will denote by (a, b) the ideal of $\mathcal{O}_{\underline{K}}$ generated by a and b. We let $p \in \mathbb{Z}$ be a prime number, and denote by $R \mapsto \bar{R}$ the reduction map $\mathbb{Z}[X] \rightarrow \mathbb{F}_{p}[X]$. Let us fix a polynomial $Q \in \mathbb{Z}[X]$ such that $\bar{Q} \in \mathbb{F}_{p}[X]$ is irreducible.
(ii) Assume that \bar{Q} divides \bar{P} in $\mathbb{F}_{p}[X]$. Show that the ideal $(p, Q(\alpha)) \in \mathcal{O}_{K}$ is prime.
(iii) Let $m \in \mathbb{N} \backslash\{0\}$ be such that \bar{Q}^{m} divides \bar{P} in $\mathbb{F}_{p}[X]$. Show that

$$
(p, Q(\alpha))^{m}=\left(p, Q(\alpha)^{m}\right)
$$

(iv) Write $\bar{P}={\overline{P_{1}}}^{n_{1}} \cdots{\overline{P_{s}}}^{n_{s}}$ where $P_{1}, \ldots, P_{s} \in \mathbb{Z}[X]$ are such that $\overline{P_{1}}, \ldots, \overline{P_{s}}$ are monic irreducible in $\mathbb{F}_{p}[X]$ and pairwise distinct. Show that

$$
p \mathcal{O}_{K}=\prod_{i=1}^{s}\left(p, P_{i}(\alpha)\right)^{n_{i}}
$$

is the decomposition of the ideal $p \mathcal{O}_{K}$ as a product of prime ideals in \mathcal{O}_{K}.

Exercise 2. Consider the polynomial $P=X^{3}+X+1 \in \mathbb{Z}[X]$, and let $\alpha \in \mathbb{C}$ be a root of P. We recall from Exercise 4, Sheet 5 that $K=\mathbb{Q}(\alpha)$ is a number field of degree 3 whose absolute discriminant is 31 , and that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(i) Which prime numbers p ramify in K ?
(ii) For every prime number p which ramifies in K, give an explicit description of the decomposition of $p \mathcal{O}_{K}$ as a product of prime ideals in \mathcal{O}_{K}. (Hint: use the previous exercise; compute $P(3)$ and $P(14)$.)

Exercise 3. Let K be a number field, and I an ideal of \mathcal{O}_{K}.
(i) Show that there exists an integer $n>0$ such that the ideal I^{n} of \mathcal{O}_{K} is principal.
(ii) Let $n>0$ be an integer such that I^{n} is principal. Show that there exists a field extension L / K with $[L: K] \leq n$, and such that the ideal $I \mathcal{O}_{L}$ of \mathcal{O}_{L} is principal.

Exercise 1. Let $K=\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z} \backslash\{0,1\}$ is square-free.
(i) Let $q \in \mathbb{N} \backslash\{0\}$. Show that \mathcal{O}_{K} admits a nonzero principal ideal I such that $\mathrm{N}(I)=q$ if and only if there exist $a, b \in \mathbb{Z}$ such that

$$
\left|a^{2}-d b^{2}\right|= \begin{cases}q & \text { if } d=2,3 \bmod 4 \\ 4 q & \text { if } d=1 \bmod 4\end{cases}
$$

(ii) If $d \in\{7,-11\}$, show that \mathcal{O}_{K} is principal.
(iii) If $d=-6$, show that the ideal class group $\mathcal{C}\left(\mathcal{O}_{K}\right)$ is isomorphic to $\mathbb{Z} / 2$.

