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3 Contents

Note on the literature

The main references that we used in preparing these notes is the book of Gille and
Szamuely [GS17]. As always, Serre’s books [Ser62, Ser02] provide excellent accounts.
There is also very useful material contained in the Stack’s project [Sta] (available online).
Kersten’s book [Ker07] (in German, available online) provides a very gentle introduction
to the subject.

For the first part (on noncommutative algebra), we additionally used Draxl’s [Dra83]
and Pierce’s [Pie82], as well as Lam’s book [Lam05] (which uses the language of qua-
dratic forms) for quaternion algebras. For the second part (on torsors), we used the book
of involutions [KMRT98, Chapters V and VII].
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CHAPTER 1

Quaternion algebras

This chapter will serve as an introduction to the theory of central simple algebras, by
developing some aspects of the general theory in the simplest case of quaternion algebras.
The results proved here will not really be used in the sequel, and many of them will be in
fact substantially generalised by other means. Rather we would like to show what can be
done “by hand”, which may help appreciate the more sophisticated methods developed
in the sequel.

Quaternions are historically very significant; since their discovery by Hamilton in
1843, they have played an influential role in various branches of mathematics. A particu-
larity of these algebras is their deep relations with quadratic forms, which is not really a
systematic feature of central simple algebras. For this reason, we will merely hint at the
connections with quadratic form theory.

1. The norm form

All rings will be assumed to be unital and associative (but often noncommutative!).
The set of elements of a ring R admitting a two-sided inverse is a group, that we denote
by R×.

We fix a base field k. A k-algebra is a ring A equipped with a structure of k-vector
space such that the multiplication map A×A→ A is k-bilinear. A morphism of k-algebras
is a ring morphism which is k-linear. Observe that the bilinearity of the multiplication
map implies that for any λ ∈ k and a ∈ A

(1.1.a) λa = (λa)1 = a(λ1) = aλ.

If A is nonzero, the ring morphism k → A given by λ 7→ λ1 is injective, and we will view
k as a subring of A.

In this chapter on quaternion algebras, we will assume that the characteristic of k is
not equal to two (i.e. 2 6= 0 in k).

Definition 1.1.1. Let a, b ∈ k×. We define a k-algebra (a, b) as follows. A basis of
(a, b) as k-vector space is given by 1, i, j, ij. It is easy to verify that (a, b) admits a unique
k-algebra structure such that

(1.1.b) i2 = a, j2 = b, ij = −ji.

We will call i, j the standard generators of (a, b). An algebra isomorphic to (a, b) for some
a, b ∈ k× will be called a quaternion algebra.

Let us first formalise an argument that will be used repeatedly, in order to prove that
a given algebra is isomorphic to a certain quaternion algebra.
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Lemma 1.1.2. Let A be a 4-dimensional k-algebra. If i, j ∈ A satisfy the relations
(1.1.b) for some a, b ∈ k×, then A ' (a, b).

Proof. It will suffice to prove that the elements 1, i, j, ij are linearly independent
over k. Since i anticommutes with j, the elements 1, i, j must be linearly independent
(recall that the characteristic of k differs from 2). Now assume that ij = u + vi + wj,
with u, v, w ∈ k. Then

0 = i(ij + ji) = i(ij) + (ij)i = i(u+ vi+ wj) + (u+ vi+ wj)i = 2ui+ 2av,

hence u = v = 0 by linear independence of 1, i. So ij = wj, hence ij2 = wj2 and thus
bi = bw, a contradiction with the linear independence of 1, i. �

Lemma 1.1.3. Let a, b ∈ k×. Then

(i) (a, b) ' (b, a),
(ii) (a, b) ' (aα2, bβ2) for any α, β ∈ k×.

Proof. (i) : We let i′, j′ be the standard generators of (b, a), and apply Lemma 1.1.2
with i = j′ and j = i′.

(ii) : We let i′′, j′′ be the standard generators of (aα2, bβ2), and apply Lemma 1.1.2
with i = α−1i′′ and j = β−1j′′. �

The algebra M2(k) of 2 by 2 matrices with coefficients in k is an example of quaternion
algebra:

Lemma 1.1.4. For any b ∈ k×, the k-algebra (1, b) is isomorphic to the algebra M2(k)
of 2 by 2 matrices with coefficients in k.

Proof. The matrices

I =

(
1 0
0 −1

)
, J =

(
0 b
1 0

)
∈M2(k)

satisfy I2 = 1, J2 = b, IJ = −JI. Thus the statement follows from Lemma 1.1.2. �

From now on, the letter Q will denote a quaternion algebra over k. We will focus
on “intrinsic” properties of Q, i.e. those that do not depend on the choice of a particular
isomorphism Q ' (a, b) for some a, b ∈ k×. Of course, the proofs may involve choosing
such a representation.

Definition 1.1.5. An element q ∈ Q such that q2 ∈ k and q 6∈ k× will be called a
pure quaternion.

Lemma 1.1.6. Let a, b ∈ k× and x, y, z, w ∈ k. The element x+ yi+ zj +wij in the
quaternion algebra (a, b) is a pure quaternion if and only if x = 0.

Proof. This follows from the computation

(x+ yi+ zj + wij)2 = x2 + ay2 + bz2 − abw2 + 2x(yi+ zj + wij). �

Lemma 1.1.7. The subset Q0 ⊂ Q of pure quaternions is a k-subspace, and we have
Q = k ⊕Q0 as k-vector spaces.

Proof. Letting a, b ∈ k× be such that Q ' (a, b), this follows from Lemma 1.1.6. �
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It follows from Lemma 1.1.7 that every q ∈ Q may be written uniquely as q = q1 +q2,
where q1 ∈ k and q2 is a pure quaternion. We define the conjugate of q as q = q1 − q2.
The following properties are easily verified, for any p, q ∈ Q:

(i) q 7→ q is k-linear.
(ii) q = q.
(iii) q = q ⇐⇒ q ∈ k.
(iv) q = −q ⇐⇒ q ∈ Q0.
(v) qq ∈ k.

(vi) qq = qq.
(vii) pq = q p.

Definition 1.1.8. We define the (quaternion) norm map N : Q→ k by q 7→ qq = qq.

Observe that the norm map is multiplicative:

N(pq) = N(p)N(q) for all p, q ∈ Q.

If a, b ∈ k× are such that Q = (a, b) and q = x+ yi+ zj + wij with x, y, z, w ∈ k, then

(1.1.c) N(q) = x2 − ay2 − bz2 + abw2.

Lemma 1.1.9. An element q ∈ Q admits a two-sided inverse if and only if N(q) 6= 0.

Proof. If N(q) 6= 0, then q is a two-sided inverse of N(q)−1q. Conversely, if p ∈ Q
is such that pq = 1, then N(p)N(q) = 1, hence N(q) 6= 0. �

We will give below a list of criteria for a quaternion algebra to be isomorphic to
M2(k). In order to do so, we first need some definitions.

Definition 1.1.10. A ring (resp. a k-algebra) D is called division if it is nonzero
and every nonzero element of D admits a two-sided inverse. Such rings are also called
skew-fields in the literature.

Remark 1.1.11. Let A be a finite-dimensional k-algebra and a ∈ A. We claim that a
left inverse of a is automatically a two-sided inverse. Indeed, assume that u ∈ A satisfies
ua = 1. Then the k-linear morphism A → A given by x 7→ ax is injective (as ax = 0
implies x = uax = 0), hence surjective by dimensional reasons. In particular 1 lies in its
image, hence there is v ∈ A such that av = 1. Then u = u(av) = (ua)v = v.

Of course, a similar argument shows that a right inverse of a is automatically a
two-sided inverse.

Definition 1.1.12. Let A be a commutative finite-dimensional k-algebra. The (al-
gebra) norm map NA/k : A → k is defined by mapping a ∈ A to the determinant of the
k-linear map A→ A given by x 7→ ax.

It follows from the multiplicativity of the determinant that

NA/k(ab) = NA/k(a) NA/k(b) for all a, b ∈ A.

When a ∈ k, we consider the field extension

k(
√
a) =

{
k if a is a square in k,

k[X]/(X2 − a) if a is not a square in k.
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In the second case, let α ∈ k(
√
a) be such that α2 = a (such an element is determined

only up to sign by the field extension k(
√
a)/k). Every element of k(

√
a) is represented

as x+ yα for uniquely determined x, y ∈ k, and

(1.1.d) Nk(
√
a)/k(x+ yα) = x2 − ay2.

Proposition 1.1.13. Let a, b ∈ k×. The following are equivalent.

(i) (a, b) 'M2(k).
(ii) (a, b) is not a division ring.

(iii) The quaternion norm map (a, b)→ k has a nontrivial zero.
(iv) We have b ∈ Nk(

√
a)/k(k(

√
a)).

(v) There are x, y ∈ k such that ax2 + by2 = 1.
(vi) There are x, y, z ∈ k, not all zero, such that ax2 + by2 = z2.

Proof. (i) ⇒ (ii) : The nonzero matrix(
0 1
0 0

)
∈M2(k)

is not invertible.
(ii) ⇒ (iii) : This follows from Lemma 1.1.9.
(iii) ⇒ (iv) : We may assume that a is not a square in k, and choose α ∈ k(

√
a) such

that α2 = a. Let q = x + yi + zj + wij be a nontrivial zero of the norm map, where
x, y, z, w ∈ k. Then by the formula (1.1.c)

0 = x2 − ay2 − bz2 + abw2,

hence x2 − ay2 = b(z2 − aw2). Assume that z2 − aw2 = 0. Then z = w = 0, because a
is not a square. Also x2 − ay2 = 0, and for the same reason x = y = 0. Thus q = 0, a
contradiction. Therefore z2 − aw2 6= 0, and by (1.1.d)

b =
x2 − ay2

z2 − aw2
=

Nk(
√
a)/k(x+ yα)

Nk(α)/k(z + wα)
= Nk(α)/k

( x+ yα

z + wα

)
.

(iv)⇒ (v) : Let α ∈ k(
√
a) be such that α2 = a. If α ∈ k, then we may take x = α−1

and y = 0. If α 6∈ k, then by (iv) there are u, v ∈ k such that b = Nk(
√
a)/k(u+ vα). Then

b = u2 − av2 by (1.1.d). If u 6= 0, we may take x = vu−1 and y = u−1. Assume that
u = 0. Then b = −av2, and in particular v 6= 0. Let

x =
a+ 1

2a
and y =

a− 1

2av
.

Then

ax2 + by2 = ax2 − av2y2 =
a2 + 2a+ 1

4a
− a2 − 2a+ 1

4a
= 1.

(v) ⇒ (vi) : Take z = 1.
(vi) ⇒ (i) : By Lemma 1.1.4 (and Lemma 1.1.3 (ii)) we may assume that a is not a

square in k, so that y 6= 0. Applying Lemma 1.1.14 below with u = xy−1, v = zy−1 and
c = b yields (a, b) ' (a, b2). Since (a, b2) ' (1, a) (by Lemma 1.1.3), we obtain (i) using
Lemma 1.1.4 below. �

Lemma 1.1.14. Let a, b, c ∈ k×, and assume that au2 + c = v2 for some u, v ∈ k.
Then (a, b) ' (a, bc).



11 1. Quaternion algebras

Proof. Denote by i′, j′ the standard generators of (a, bc). Set

i = i′, j = c−1(vj′ + ui′j′) ∈ (a, bc).

The relation i′j′ + j′i′ = 0 implies that ij + ji = 0. We have i2 = i′2 = a, and

j2 = c−2(bcv2 − abcu2) = bc−1(v2 − au2) = b.

It follows from Lemma 1.1.2 that (a, bc) ' (a, b). �

Definition 1.1.15. A quaternion algebra satisfying the conditions of Proposition 1.1.13
will be called split (observe that this does not depend on the choice of a, b ∈ k×).

Note that Proposition 1.1.13 (v) provides an effective of checking whether a quater-
nion algebra is split, by looking at the solutions of a quadratic equation.

Example 1.1.16. Assume that k is quadratically closed, i.e. that every element of k
is a square. Then for every a, b ∈ k×, we have (a, b) ' (1, b) ' M2(k) by Lemma 1.1.4
(and Lemma 1.1.3 (ii)). Therefore every quaternion k-algebra splits.

Example 1.1.17. Assume that the field k is finite, with q elements. As the group
k× is cyclic of order q − 1, there are exactly 1 + (q − 1)/2 squares in k. Thus the sets
{ax2|x ∈ k} and {1 − by2|y ∈ k} both consist of 1 + (q − 1)/2 elements; as subsets of
the set k having q elements, they must intersect. It follows from the criterion (v) in
Proposition 1.1.13 that (a, b) splits. Therefore every quaternion algebra over a finite field
is split.

Example 1.1.18. Let k = R. The quaternion algebra (−1,−1) is not split, by
Proposition 1.1.13 (v). Since k×/k×2 = {1,−1}, and taking into account Lemma 1.1.4
(as well as Lemma 1.1.3), we see that there are exactly two isomorphism classes of k-
algebras, namely M2(k) and (−1,−1).

Let us record another useful consequence of Lemma 1.1.14.

Proposition 1.1.19. Let a, b, c ∈ k×. If (a, c) is split, then (a, bc) ' (a, b).

Proof. Since (a, c) is split, by Proposition 1.1.13 (iv) and (1.1.d) there are u, v ∈ k
such that c = v2 − au2. The statement follows from Lemma 1.1.14. �

Proposition 1.1.20. Let Q,Q′ be quaternion algebras, with respective pure quater-
nion subspaces Q0, Q

′
0. Then Q ' Q′ if and only if there is a k-linear map ϕ : Q0 → Q′0

such that ϕ(q)2 = q2 ∈ k for all q ∈ Q0.

Proof. Let ψ : Q→ Q′ be an isomorphism of k-algebras. If q ∈ Q0, then

ψ(q)2 = ψ(q2) = q2 ∈ k, and ψ(q) 6∈ ψ(k×) = k×,

so that ψ(q) ∈ Q′0. So we may take for ϕ the restriction of ψ.
Conversely, let ϕ : Q0 → Q′0 be a k-linear map such that ϕ(q)2 = q2 ∈ k for all q ∈ Q0.

We may assume that Q = (a, b) with its standard generators i, j. We have ϕ(i)2 = i2 = a
and ϕ(j)2 = j2 = b, and

ϕ(i)ϕ(j) + ϕ(j)ϕ(i) = ϕ(i+ j)2 − ϕ(i)2 − ϕ(j)2 = (i+ j)2 − i2 − j2 = ij + ji = 0.

By Lemma 1.1.2 (applied to the elements ϕ(i), ϕ(j) ∈ Q′), we have Q′ ' (a, b). �
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The norm map N : Q→ k is in fact a quadratic form. The next corollary is a refor-
mulation of Proposition 1.1.20, assuming some basic quadratic form theory. It illustrates
the strong connections between the theories of quaternion algebras and quadratic forms.
It can be safely ignored, and will not be used in the sequel.

Corollary 1.1.21. Two quaternion algebras are isomorphic if and only if their norm
forms are isometric.

Proof. Let Q be a quaternion algebra and N : Q → k its norm form. Note that
N(q) = −q2 for all q ∈ Q0. The subspaces k and Q0 are orthogonal in Q with respect
to the norm form N , and N |k = 〈1〉. So we have a decomposition N ' 〈1〉 ⊥ (N |Q0

).
This quadratic form is nondegenerate (e.g. by (1.1.c)), hence a morphism ϕ as in Propo-
sition 1.1.20 is automatically an isometry. The corollary follows, by Witt’s cancellation
Theorem (see for instance [Lam05, Theorem 4.2]). �

2. Quadratic splitting fields

Definition 1.2.1. The center of a ring R is the set of elements r ∈ R such that
rs = sr for all s ∈ R. As observed in (1.1.a), the center of a nonzero k-algebra always
contains k. A nonzero k-algebra is called central if its center equals k.

Lemma 1.2.2. Every quaternion algebra is central.

Proof. We may assume that the algebra is equal to (a, b) with a, b ∈ k×. Consider
an arbitrary element q = x+yi+zj+wij of (a, b), where x, y, z, w ∈ k. Easy computations
show that qi = iq if and only if z = w = 0, and that qj = jq if and only if y = w = 0. �

Remark 1.2.3. Let a, b ∈ k×. We claim that (a, b) contains a subfield isomorphic
to k(

√
a). To see this, we may assume that a is not a square in k. Then the morphism

of k-algebras k(
√
a) = k[X]/(X2 − a) → (a, b) given by X 7→ i is injective (because its

source is a field, and its target is nonzero).

Proposition 1.2.4. Let D be a central division k-algebra of dimension 4. Assume
that D contains a k-subalgebra isomorphic to k(

√
a) for some a ∈ k which is not a square

in k. Then D ' (a, b) for some b ∈ k×.

Proof. Let L ⊂ D be a subalgebra isomorphic to k(
√
a), and α ∈ L such that

α2 = a. Since α does not lie in the center of D, there is x ∈ D such that xα 6= αx. Then
β = α−1xα− x is nonzero. Using the fact that α2 = a is in the center of D, we see that

βα = α−1xα2 − xα = αx− xα = −αβ.

Multiplying with β on the left, resp. right, we obtain β2α = −βαβ, resp. βαβ = −αβ2.
It follows that β2 commutes with α. Since β does not commute with α, we have β 6∈ L.
Therefore the L-subspace of D generated by 1, β has dimension 2 over L, hence dimension
4 over k, and thus coincides with D by dimensional reasons. In particular the k-algebra
D is generated by α, β. Since β2 commutes with α and β, it lies in center of D, so that
b = β2 ∈ k×. It follows from Lemma 1.1.2 (applied with i = α, j = β) that D ' (a, b). �

Lemma 1.2.5. Let D be a central division k-algebra of dimension 4 and d ∈ D − k.
Then the k-subalgebra of D generated by d is a quadratic field extension of k.
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Proof. The powers di for i ∈ N are linearly dependent over k (as D is finite-
dimensional), hence there is a nonzero polynomial P ∈ k[X] such that P (d) = 0. Since D
contains no nonzero zerodivisors (being division), we may assume that P is irreducible.
Then X 7→ d defines a morphism of k-algebras k[X]/P → D. Since k[X]/P is a field and
D is nonzero, this morphism is injective. Its image L is a field, and coincides with the
k-subalgebra of D generated by d. Now D is a vector space over L, and dimLD ·dimk L =
dimkD = 4. We cannot have dimk L = 4, for D = L would then be commutative, and so
would not be central over k. The case dimk L = 1 is also excluded, since by assumption
d 6∈ k. So we must have dimk L = 2. �

We thus obtain an intrinsic characterisation of quaternion division algebras (recall
that a quaternion algebra is either split or division, by Proposition 1.1.13):

Corollary 1.2.6. Every central division k-algebra of dimension 4 is a quaternion
algebra.

Proof. Since k has characteristic different from 2, every quadratic extension of k
has the form k(

√
a) for some a ∈ k×. Thus D contains such an extension by Lemma 1.2.5,

and the statement follows from Proposition 1.2.4. �

If L/k is a field extension and Q is a quaternion k-algebra, then QL = Q ⊗k L is
naturally a quaternion L-algebra. Note that for any q ∈ Q and λ ∈ L we have

(1.2.a) q ⊗ λ = q ⊗ λ ; N(q ⊗ λ) = N(q)⊗ λ2.

Definition 1.2.7. We will say that Q splits over L, or that L is a splitting field for
Q, if the quaternion L-algebra QL is split.

Example 1.2.8. Let Q be a quaternion k-algebra which splits over the purely tran-
scendental extension k(t). Writing Q ' (a, b) for some a, b ∈ k×, this means that
ax2 + by2 = z2 has a nontrivial solution in k(t), by Proposition 1.1.13. Clearing de-
nominators we may assume that x, y, z ∈ k[t], and that one of x, y, z is not divisible by
t. Then x(0), y(0), z(0) is a nontrivial solution in k, hence Q splits. Therefore every
quaternion algebra splitting over k(t) splits over k.

Proposition 1.2.9. Let a ∈ k× and Q be a quaternion algebra. Assume that a is
not a square in k. Then the following are equivalent:

(i) Q ' (a, b) for some b ∈ k×.
(ii) Q splits over k(

√
a).

(iii) The k-algebra Q contains a subalgebra isomorphic to k(
√
a).

Proof. (i) ⇒ (ii) : Since a is a square in k(
√
a), we have (a, b) ' (1, b) over k(

√
a),

which splits by Lemma 1.1.4.
(ii) ⇒ (iii) : If Q is split, then Q ' (1, a) ' (a, 1) by Lemma 1.1.4, and (iii) was

observed in Remark 1.2.3. Thus we assume that Q is division. Let α ∈ k(
√
a) be such

that α2 = a. Then there are p, q ∈ Q not both zero such that N(p ⊗ 1 + q ⊗ α) = 0 by
Proposition 1.1.13. Set r = pq ∈ Q. In view of (1.2.a), we have

0 = (p⊗ 1 + q ⊗ α)(p⊗ 1 + q ⊗ α) = (N(p) + aN(q))⊗ 1 + (r + r)⊗ α.

We deduce that N(p) = −aN(q) and that r is a pure quaternion. Now

r2 = −rr = −pqqp = −N(p)N(q) = aN(q)2.
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Note that N(q) 6= 0, for otherwise N(p) = −aN(q) = 0, and thus q = p = 0 (by
Lemma 1.1.9, as Q is division), contradicting the choice of p, q. The element s =
N(q)−1r ∈ Q satisfies s2 = a. Mapping X to s yields a morphism of k-algebras
k[X]/(X2 − a)→ Q, and (iii) follows.

(iii) ⇒ (i) : If Q is not division, then Q ' (1, a) ' (a, 1) by Lemma 1.1.4, so
we may take b = 1 in this case. If Q is division, the implication has been proved in
Proposition 1.2.4. �

3. Biquaternion algebras

Let Q,Q′ be quaternion algebras. Denote by Q0, Q
′
0 the respective subspaces of pure

quaternions.

Definition 1.3.1. The Albert form associated with the pair (Q,Q′) is the quadratic
form Q0 ⊕Q′0 → k defined by q + q′ 7→ q′2 − q2 for q ∈ Q0 and q′ ∈ Q′0.

Theorem 1.3.2 (Albert). Let Q,Q′ be quaternion algebras. The following are equiv-
alent:

(i) The ring Q⊗k Q′ is not division.
(ii) There exist a, b′, b ∈ k× such that Q ' (a, b) and Q′ ' (a, b′).

(iii) The Albert form associated with (Q,Q′) has a nontrivial zero.

Proof. (ii) ⇒ (iii) : If i ∈ Q0 and i′ ∈ Q′0 are such that i2 = a = i′2, then
i− i′ ∈ Q0 ⊕Q′0 is a nontrivial zero of the Albert form.

(iii) ⇒ (i) : If q ∈ Q0 and q′ ∈ Q′0 are such that q2 = q′2 ∈ k, we have in Q⊗k Q′

(q ⊗ 1− 1⊗ q′)(q ⊗ 1 + 1⊗ q′) = 0.

As Q0 ∩ k = 0 in Q (see Lemma 1.1.7) we have (Q0 ⊗k k) ∩ (k ⊗k Q′0) = 0 in Q ⊗k Q′
(exercise), hence q ⊗ 1 6= 1⊗ q′ and q ⊗ 1 6= −1⊗ q′. Thus the above relation shows that
q ⊗ 1− 1⊗ q′ is a nonzero noninvertible element of Q⊗k Q′.

(i) ⇒ (ii) : We assume that (ii) does not hold, and show that Q⊗k Q′ is division. In
view of Lemma 1.1.4 none of the algebras Q,Q′ is isomorphic to M2(k), so Q and Q′ are
division by Proposition 1.1.13. We may assume that Q′ = (a, b) for some a, b ∈ k×, and
denote by i, j ∈ Q′ the standard generators. Since Q′ is division, the element a is not a
square in k (by Lemma 1.1.4). The subalgebra L of Q generated by i is a field isomorphic
to k(

√
a) (Remark 1.2.3). Since (ii) does not hold, Proposition 1.2.9 implies that the ring

Q⊗k L remains division.
In view of Remark 1.1.11, it will suffice to show that any nonzero x ∈ Q⊗kQ′ admits

a left inverse. Since 1, j is an L-basis of Q′, we may write x = p1 + p2(1 ⊗ j) where
p1, p2 ∈ Q⊗k L. If p2 = 0, then x belongs to the division algebra Q⊗k L, hence admits
a left inverse. Thus we may assume that p2 is nonzero, hence invertible in the division
algebra Q⊗k L. Replacing x by p−1

2 x, we come to the situation where p2 = 1. So we find
q1, q2 ∈ Q such that, in Q⊗k Q′

x = q1 ⊗ 1 + q2 ⊗ i+ 1⊗ j.
Assume that q1q2 = q2q1. Let K be the k-subalgebra of Q generated by q1, q2. We

claim that if K 6= k, then K is a quadratic field extension of k. Indeed, this is true by
Lemma 1.2.5 if q1 ∈ k, so we will assume that q1 6∈ k. Then the k-subalgebra K1 of Q
generated by q1 is a quadratic field extension of k, by the same lemma. If q2 6∈ K1, then
1, q2 is a K1-basis of Q, so that K = Q. This is not possible since q1 and q2 commute (as



15 1. Quaternion algebras

Q is central). Thus q2 ∈ K1, and K = K1 is as required, proving the claim. If K 6= k,
then Proposition 1.2.9 thus implies that Q splits over K, and since (ii) does not hold, by
the same proposition K⊗kQ′ must remain division. This conclusion also holds if K = k.
Thus in any case x ∈ K ⊗k Q′ admits a left inverse.

So we may assume that q1q2 6= q2q1. Let y = q1 ⊗ 1− q2 ⊗ i− 1⊗ j ∈ Q⊗k Q′. Then

yx = (q1 ⊗ 1− q2 ⊗ i− 1⊗ j)(q1 ⊗ 1 + q2 ⊗ i+ 1⊗ j)
= (q1 ⊗ 1− q2 ⊗ i)(q1 ⊗ 1 + q2 ⊗ i)− 1⊗ j2 as ji = −ij
= q2

1 ⊗ 1− aq2
2 ⊗ 1 + (q1q2 − q2q1)⊗ i− b⊗ 1.

Thus yx belongs to the division subalgebra Q ⊗k L. This element is also nonzero (since
q1q2 6= q2q1), hence admits a left inverse. Therefore x admits a left inverse. �

Lemma 1.3.3. For any a, b, c ∈ k×, we have

(a, b)⊗k (a, c) ' (a, bc)⊗kM2(k).

Proof. Let i, j, resp. i′, j′, be the standard generators of (a, b), resp. (a, c). Consider
the k-subspace A of (a, b)⊗k (a, c) generated by

1⊗ 1, i⊗ 1, j ⊗ j′, ij ⊗ j′.
Then A is stable under multiplication. So is the k-subspace A′ generated by

1⊗ 1, 1⊗ j′, i⊗ i′, i⊗ j′i′.
There are isomorphisms of k-algebras

A ' (a, bc) ; A′ ' (c, a2) ' (c, 1) 'M2(k).

Moreover every element of A commutes with every element of A′. Therefore the k-linear
map f : A⊗k A′ → (a, b)⊗k (a, c) given by x⊗ y 7→ xy = yx is a morphism of k-algebras;
its image visibly contains the elements

i⊗ 1, 1⊗ i′, j ⊗ 1, 1⊗ j′.
Since these elements generate the k-algebra (a, b)⊗k(a, c), we conclude that f is surjective,
hence an isomorphism by dimensional reasons. �

Proposition 1.3.4. Let Q,Q′ be quaternion algebras. Then

Q ' Q′ ⇐⇒ Q⊗k Q′ 'M4(k).

Proof. If Q ' Q′ ' (a, b) for some a, b ∈ k×, then Q ⊗k Q′ ' (a, b2) ⊗k M2(k) by
Lemma 1.3.3, and (a, b2) ' (a, 1) 'M2(k). Now M2(k)⊗kM2(k) 'M4(k) (exercise).

Assume now that Q⊗k Q′ ' M4(k). Since M4(k) is not division, by Albert’s Theo-
rem 1.3.2, there are a, b, c ∈ k× such that Q ' (a, b) and Q′ ' (a, c). If (a, bc) splits, then
Proposition 1.1.19 implies that (a, b) ' (a, b2c) ' (a, c), as required. So we assume that
D = (a, bc) is division, and come to a contradiction. By Lemma 1.3.3, we have

M4(k) ' Q⊗k Q′ ' (a, b)⊗k (a, c) ' (a, bc)⊗kM2(k) 'M2(D).

The element of M2(D) corresponding to the matrix
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∈M4(k)
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is an endomorphism ϕ of the left D-module D⊕2 = De1 ⊕ De2 such that ϕ3 6= 0 and
ϕ4 = 0. Since ϕ is not injective (as ϕ4 is not injective), the kernel of ϕ contains an
element λ1e1 + λ2e2, where λ1, λ2 ∈ D are not both zero. Upon exchanging the roles of
e1 and e2, we may assume that λ1 6= 0. Let f = ϕ(e2). Then ϕ(e1) = −λ−1

1 λ2f , hence
ϕ(D⊕2) = Df . Thus ϕ(f) = µf for some µ ∈ D, and

0 = ϕ4(e2) = ϕ3(f) = µ3f.

If µ 6= 0, then f = µ−3µ3f = 0, which implies that ϕ = 0, a contradiction. Thus µ = 0,
and ϕ2 = 0, another contradiction. �

Remark 1.3.5. A tensor product of two quaternion algebras is called a biquaternion
algebra. It follows from Theorem 1.3.2 and Lemma 1.3.3 that such an algebra is either
division, or isomorphic to M2(D) for some division quaternion algebra D, or to M4(k).
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Exercises

Exercise 1.1. Let a ∈ k×. Show that:

(i) (a,−a) splits.
(ii) If a 6= 1, then (a, 1− a) splits.
(iii) (a, a) ' (a,−1).
(iv) (a,−1) splits if and only if a is a sum of two squares in k.

Exercise 1.2. (Chain Lemma.) Let a, b, c, d ∈ k× be such that (a, b) ' (c, d). We
are going to prove that there is e ∈ k× such that

(a, b) ' (e, b) ' (e, d) ' (c, d).

So we let Q be such that (a, b) ' Q ' (c, d).

(i) Let i, j, resp. i′, j′, be the images in Q of the standard generators of (a, b), resp.
(c, d). Show that i, j, i′, j′ ∈ Q0.

(ii) Let V be the k-subspace of Q0 generated by j, j′. Show that the morphism ϕ : Q0 →
Homk(V, k) sending q ∈ Q0 to the map v 7→ qv + vq is not injective.

(iii) Deduce that there is a nonzero ε ∈ Q0 such that εj = −jε and εj′ = −j′ε.
(iv) Show that e = ε2 ∈ k, and conclude.

Exercise 1.3. Let L/k be a field extension of odd degree and Q a quaternion k-
algebra. Show that Q splits if and only if Q⊗k L splits over L. (Hint : use the splitting
criterion involving the norm of quadratic field extensions, and the properties of field
norms.)

Exercise 1.4. Show that every quaternion algebra can be realised as a subalgebra
of M4(k).

Exercise 1.5. Let k = Q, and consider that quaternion algebra Q = (−1,−1) over
k. Let ξ ∈ C be a primitive 5-th root of 1, and K ⊂ C be the field extension generated
by ξ.

(i) Show that QK splits.
(ii) Determine the subfields of K.
(iii) Deduce that K contains no quadratic extension splitting Q.

Exercise 1.6. Show that every element of a quaternion k-algebra satisfies a quadratic
equation over k.

Exercise 1.7. Let D be a division k-algebra. We assume that for every d ∈ D,
there is a nonzero polynomial P ∈ k[X] of degree ≤ 2 such that P (d) = 0. We are going
to prove that one of the following must happen (in particular, the k-algebra D must be
finite-dimensional!):

— D = k,
— D is a quadratic field extension of k,
— D is a quaternion k-algebra.

Let us assume that D 6= k.
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(i) Show that there is i ∈ D − k and a ∈ k such that i2 = a.
(ii) Let K be the k-subalgebra of D generated by i. Show that K is a field and that

[K : k] = 2.
(iii) Let ϕ : D → D be the map d 7→ i−1di. Show that ϕ2 = id, and that D = D+ ⊕D−

as K-vector spaces, where D+ = ker(ϕ− id), D− = ker(ϕ+ id).
(iv) Show that D+ is a K-subalgebra of D.
(v) Let α ∈ D+ and F the K-subalgebra of D+ generated by α. Show that F is a field.

(vi) Show that α ∈ K.
(vii) Deduce that D+ = K.

(viii) Let now β, β′ ∈ D−. Show that ββ′ ∈ D+, and deduce that dimK D− ∈ {0, 1}.
(ix) Assume that dimK D− = 1, and let j be a nonzero element of D−. Let A ∈ k[X] be

a nonzero polynomial of degree ≤ 2 such that A(j) = 0. Show that A(−j) = 0, and
deduce that j2 ∈ k.

(x) Conclude.



19

CHAPTER 2

Simple algebras

In this chapter, we develop the general theory of finite-dimensional simple algebras
over a field. Wedderburn’s Theorem asserts that such algebras are matrix algebras over
(finite-dimensional central) division algebras. This theorem plays a key role in the theory,
because it permits to reduce many proofs to the case of division algebras, where the
situation is often more tractable.

The tensor product of simple algebras need not be simple. We prove that this is
however the case when one factor is additionally central. The notion of commutant
(also called centraliser) generalises that of center of an algebra. Applied to a subalgebra,
this yields another subalgebra, which in some respects behaves as a dual to the original
subalgebra. Our analysis of the commutant will be used in the next chapter to investigate
the so-called “maximal subfields” of division algebras.

We conclude this chapter with Skolem–Noether’s Theorem, which essentially de-
scribes the automorphism group of finite-dimensional central simple algebras, by asserting
that all such automorphisms are inner (that is, given by the conjugation by some invertible
element).

1. Wedderburn’s Theorem

A module (resp. ideal) will mean a left module (resp. ideal). When R is a ring, the
ring of n by n matrices will be denoted by Mn(R). If M,N are R-modules, we denote
the set of morphisms of R-modules M → N by HomR(M,N). If M is an R-module,
the set EndR(M) = HomR(M,M) is naturally an R-algebra, and we will denote by
AutR(M) = (EndR(M))× the set of automorphisms of M .

The letter k will denote a field, which is now allowed to be of arbitrary characteristic.

Definition 2.1.1. Let R be a ring. An R-module is called simple if it has exactly
two submodules: zero and itself.

Lemma 2.1.2 (Schur). Let R be a ring and M a simple R-module. Then EndR(M)
is a division ring.

Proof. Let ϕ ∈ EndR(M) be nonzero. The kernel of ϕ is a submodule of M unequal
to M . Since M is simple, this submodule must be zero. Similarly the image of ϕ is a
nonzero submodule of M , hence must coincide with M . Thus ϕ is bijective, and it follows
that ϕ is invertible in EndR(M). �

Definition 2.1.3. Let R be a ring. The opposite ring Rop is the ring equal to R
as an abelian group, where multiplication is defined by mapping (x, y) to yx (instead of
xy for the multiplication in R). Note that if R is a k-algebra, then Rop is naturally a
k-algebra.
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Observe that:

(i) R = (Rop)op.
(ii) Every isomorphism R ' S induces an isomorphism Rop ' Sop.
(iii) If R is simple, then so is Rop.
(iv) Transposing matrices induces an isomorphism Mn(R)op 'Mn(Rop).

Lemma 2.1.4. Let R be a ring (resp. k-algebra) and e ∈ R such that e2 = e. Then
S = eRe is naturally a ring (resp. k-algebra), which is isomorphic to EndR(Re)op.

Proof. Consider the ring morphism ϕ : S → EndR(Re)op sending s to the morphism
x 7→ xs. Observe that ϕ(s)(e) = s for any s ∈ S, hence ϕ is injective. If f : Re→ Re is a
morphism of R-modules, we may find r ∈ R such that f(e) = re. Then for any y ∈ Re,
we have ye = y, hence

f(y) = f(ye) = yf(e) = yre = yere = ϕ(ere)(y),

so that f = ϕ(ere), proving that ϕ is surjective. �

Definition 2.1.5. A ring is called simple if it has exactly two two-sided ideals: zero
and itself.

Remark 2.1.6. A division ring (Definition 1.1.10) is simple.

We now collect a few facts concerning matrix algebras, that are proved using explicit
manipulations of the matrix coefficients.

Proposition 2.1.7. Let R be a ring and n ∈ N − 0. We view R as the subring of
diagonal matrices in Mn(R).

(i) If the ring R is simple, then so is Mn(R).
(ii) The rings R and Mn(R) have the same center (Definition 1.2.1).

(iii) Assume that R is a division ring (resp. division k-algebra). Then Mn(R) possesses
a minimal nonzero ideal. If I is any such ideal, then R ' EndMn(R)(I)op.

Proof. We will denote by ei,j ∈Mn(R) the matrix having (i, j)-th coefficient equal
to 1, and all other coefficients equal to zero. These elements commute with the subring
R ⊂Mn(R), and generate Mn(R) as an R-module. Taking the (i, j)-th coefficient yields
a morphism of two-sided R-modules γi,j : Mn(R)→ R. For any m ∈Mn(R), we have

m =

n∑
i,j=1

γi,j(m)ei,j =

n∑
i,j=1

ei,jγi,j(m),

and

(2.1.a) ek,imej,l = γi,j(m)ek,l for all i, j, k, l ∈ {1, . . . , n}.

(i) : Let J be a two-sided ideal of Mn(R). Then there is a couple (i, j) such that the
two-sided ideal γi,j(J) of R is nonzero, hence equal to R by simplicity of R. Thus there
is m ∈ J such that γi,j(m) = 1, and (2.1.a) implies that ek,l ∈ J for all k, l. We conclude
that J = Mn(R).

(ii) : Let k, l ∈ {1, . . . , n} and m ∈Mn(R). Then

ek,lm =

n∑
i,j=1

γi,j(m)ek,lei,j =

n∑
j=1

γl,j(m)ek,j ,
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mek,l =

n∑
i,j=1

γi,j(m)ei,jek,l =

n∑
i=1

γi,k(m)ei,l.

Assume that m commutes with ek,l. Then γk,k(m) = γl,l(m), and γi,k(m) = 0 for i 6= k.
It follows that the center of Mn(R) is contained in R, hence in the center of R. Conversely,
any element of the center of R certainly commutes with every matrix.

(iii) : Let us write B = Mn(R). For r = 1, . . . , n, consider the ideal Ir = Ber,r of
B. Let m be a nonzero element of Ir. There is a couple (k, i) such that ek,im 6= 0. As
(er,r)

2 = er,r, we have m = mer,r. It follows from (2.1.a) that γi,r(m)ek,r = ek,im. In
particular γi,r(m) 6= 0, and

er,r = er,kek,r = er,kγk,r(m)−1ek,im ∈ Bm,
and therefore Ir ⊂ Bm. We have proved that Ir is a simple B-module, or equivalently
a minimal nonzero ideal of B. If I is any other such ideal, then there is a surjective
morphism of B-modules B → I (as I must be generated by a single element). Since
the natural morphism I1 ⊕ · · · ⊕ In → B is surjective (as ei,j = ei,jej,j ∈ Ij for all i, j),
the composite Ir → I must be nonzero for some r, hence an isomorphism as both Ir
and I are simple (see the proof of Lemma 2.1.2). Now the map R → er,rBer,r given by
x 7→ xer,r is a ring (resp. k-algebra) isomorphism (with inverse γr,r). Thus it follows from
Lemma 2.1.4 that R ' EndB(Ir)

op ' EndB(I)op. �

The main interest of Proposition 2.1.7 (iii) is that it permits to recover R from Mn(R)
when R is division. We deduce that following “unicity” result:

Corollary 2.1.8. If D,E are division rings (resp. division k-algebras) such that
Mn(D) 'Mm(E) for some nonzero integers m,n, then D ' E.

Proof. By Proposition 2.1.7 (iii), here is a minimal nonzero ideal I of Mn(D).
The corresponding ideal J of Mm(E) is also a minimal nonzero ideal, hence by Proposi-
tion 2.1.7 (iii) again

D ' EndMn(D)(I)op ' EndMm(E)(J)op ' E. �

Definition 2.1.9. A ring R is called artinian if every descending chain of ideals
stabilises. This means that if In for n ∈ N are ideals of R such that In+1 ⊂ In for all n,
then there exist N ∈ N such that In = IN for all n ≥ N .

Example 2.1.10. Every finite-dimensional k-algebra is an artinian ring.

Remark 2.1.11. In the literature, the artinian property is sometimes included in the
definition of simple rings. So what we call “artinian simple rings” are simply referred to
as “simple rings”.

Proposition 2.1.12. Let A be an artinian simple ring.

(i) There is a unique simple A-module, up to isomorphism.
(ii) Every finitely generated A-module is a finite direct sum of simple A-modules.

Proof. Since A is artinian, it admits a minimal nonzero ideal S. Then S is a simple
A-module. Moreover the two-sided ideal SA generated by S in A is nonzero, hence
SA = A by simplicity of A. In particular there are elements a1, . . . , ap ∈ A such that
1 ∈ Sa1 + · · ·+ Sap. We have thus a surjective morphism of A-modules S⊕p → A given
by (s1, . . . , sp) 7→ s1a1 + · · ·+ spap.
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Let now M be a finitely generated A-module. Then M is a quotient of A⊕q for some
integer q, hence a quotient of S⊕n for some integer n (namely n = pq). Choose n minimal
with this property, and denote by N the kernel of the surjective morphism S⊕n → M .
For i = 1, . . . , n, denote by πi : S

⊕n → S the projection onto the i-th factor. If N 6= 0,
there is i such that πi(N) 6= 0. Since S is simple, this implies that πi(N) = S. Let now
m ∈ M , and s ∈ S⊕n a preimage of m. Then there is z ∈ N such that πi(z) = πi(s).
The element s − z is mapped to m in M , and belongs to kerπi ' S⊕n−1. This yields a
surjective morphism S⊕n−1 → M , contradicting the minimality of n. So we must have
N = 0, and S⊕n 'M . This proves the second statement.

If M is simple, we must have n = 1. Now a simple module is necessarily finitely
generated, so (i) follows. �

Theorem 2.1.13 (Wedderburn). Let A be an artinian simple ring (resp. a finite-
dimensional simple k-algebra). Then A is isomorphic to Mn(D) for some integer n and
division ring (resp. finite-dimensional division k-algebra) D. Such a ring (resp. k-algebra)
D is unique up to isomorphism, and the centers of A and D are isomorphic.

Proof. Recall that in any case A is artinian (Example 2.1.10). Let S be a simple
A-module, which exists by Proposition 2.1.12. Then the ring E = EndA(S) is division by
Schur’s Lemma 2.1.2. By Proposition 2.1.12 there is an integer n such that A ' S⊕n as
A-modules. In view of Lemma 2.1.4 (with R = A and e = 1), we have

A = EndA(A)op ' EndA(S⊕n)op = Mn(EndA(S))op = Mn(E)op = Mn(Eop).

Thus we may take D = Eop. Unicity was proved in Corollary 2.1.8, and the last statement
follows from Proposition 2.1.7 (ii). �

2. The commutant

If A,B are k-algebras, their tensor product A⊗k B is naturally a k-algebra. We will
use without explicit mention the isomorphism

(2.2.a) A⊗k B ' B ⊗k A ; a⊗ b 7→ b⊗ a.
In this section, we consider the problem of determining whether a tensor product of simple
algebras is simple.

Definition 2.2.1. Let R be a ring and E ⊂ R a subset. The set

ZR(E) = {r ∈ R|er = re for all e ∈ E}
is a subring of R, called the commutant of E in R. We say that an element of R commutes
with E if it belongs to ZR(E). Recall from Definition 1.2.1 that Z(R) = ZR(R) is called
the center of R, and that a nonzero k-algebra A is called central if Z(A) = k.

Lemma 2.2.2. The center of a simple ring is a field.

Proof. Let R be a simple ring, and x a nonzero element of Z(R). Then Rx is a
nonzero two-sided ideal of R (it coincides with xR), hence Rx = R. Thus we find y ∈ R
such that yx = 1. Since X ∈ Z(R), we also have xy = 1. For any r ∈ R, we have

yr = yr(xy) = y(rx)y = y(xr)y = (yx)ry = ry,

proving that y ∈ Z(R). �

Let us investigate the interactions between the tensor product and commutant.
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Lemma 2.2.3. Let A,B be k-algebras. If A′ ⊂ A is a subalgebra and B 6= 0, then

ZA⊗kB(A′ ⊗k k) = ZA(A′)⊗k B.

Proof. Let C = ZA⊗kB(A′ ⊗k k). Certainly ZA(A′)⊗k B ⊂ C. Any element c ∈ C
may be written as c = a1 ⊗ b1 + · · · + an ⊗ bn for some n ∈ N, with a1, . . . , an ∈ A and
b1, . . . , bn ∈ B. We may additionally assume that b1, . . . , bn are linearly independent over
k. Let a′ ∈ A′. Then c commutes with a′ ⊗ 1, hence we have in A⊗k B

0 = c(a′ ⊗ 1)− (a′ ⊗ 1)c = (a1a
′ − a′a1)⊗ b1 + · · ·+ (ana

′ − a′an)⊗ bn.

The linear independence of b1, . . . , bn implies that the k-subspaces A⊗k b1k, . . . , A⊗k bnk
are in direct sum in A⊗k B (exercise), and we conclude that each ai commutes with a′.
We have proved that C ⊂ ZA(A′)⊗k B. �

Proposition 2.2.4. Let A,B be k-algebras. Let A′ ⊂ A and B′ ⊂ B be subalgebras.
Then

ZA⊗kB(A′ ⊗k B′) = ZA(A′)⊗k ZB(B′).

Proof. We may assume that A and B are nonzero. Let C = ZA⊗kB(A′⊗kB′). Then
C contains ZA(A′)⊗k ZB(B′). Conversely by Lemma 2.2.3 (and (2.2.a)), the subalgebra
C ⊂ A⊗k B is contained in

ZA⊗kB(A′ ⊗k k) ∩ ZA⊗kB(k ⊗k B′) = (ZA(A′)⊗k B) ∩ (A⊗k ZB(B′)),

which coincides with ZA(A′)⊗k ZB(B′) (exercise). �

Proposition 2.2.5. Let A,B be k-algebras. If the ring A⊗kB is simple, then so are
A and B.

Proof. Let I ( A be a two-sided ideal. Then the k-algebra C = A/I is nonzero.
Consider the commutative diagram

A
f //

a 7→a⊗1

��

C

c 7→c⊗1

��
A⊗k B

f⊗idB // C ⊗k B

Since A⊗k B 6= 0 (being simple), we have B 6= 0. As C 6= 0, we must have C ⊗k B 6= 0
(exercise). By simplicity of A ⊗k B, the ring morphism f ⊗ idB is injective. Since the
left vertical morphism in the above diagram is also injective (exercise), it follows that f
is injective, or equivalently that I = 0. This proves that A is simple (and so is B by
symmetry). �

Proposition 2.2.6. Let A be a central simple k-algebra and B a simple k-algebra.
Then the k-algebra A⊗k B is simple.

Proof. Let I ⊂ A ⊗k B be a two-sided ideal. Let i = a1 ⊗ b1 + · · · + an ⊗ bn be
a nonzero element of I, where n ∈ N − 0, with a1, . . . , an ∈ A and b1, . . . , bn ∈ B. We
assume that n is minimal, in the sense that if a′1⊗ b′1 + · · ·+a′m⊗ b′m is a nonzero element
of I, then m ≥ n. Consider the following subset of A:

H = {α1 ∈ A|α1 ⊗ b1 + · · ·+ αn ⊗ bn ∈ I for some α2, . . . , αn ∈ B}.
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The set H is a two-sided ideal of A, and it is nonzero since it contains a1 6= 0. By
simplicity of A, it follows that H = A, and in particular 1 ∈ H. We may thus assume
that a1 = 1. Then for any a ∈ A, we have

(a⊗ 1)i− i(a⊗ 1) = (aa2 − a2a)⊗ b2 + · · ·+ (aan − ana)⊗ bn ∈ I.
By minimality of n, we must have (a ⊗ 1)i = i(a ⊗ 1). Thus, by Lemma 2.2.3 and the
fact the A is central

i ∈ ZA⊗kB(A⊗k k) = ZA(A)⊗k B = k ⊗k B.
Therefore i is of the form 1 ⊗ b for some b ∈ B. The subset J = {b ∈ B|1 ⊗ b ∈ I} is a
two-sided ideal of B. It is nonzero (as it contains i), hence coincides with B by simplicity
of B. Thus J contains 1 ∈ B, which implies that I contains 1 ∈ A⊗kB, hence I = A⊗kB.
We have proved that the ring A⊗k B is simple. �

Remark 2.2.7. The assumption that one factor is central is necessary in Proposi-
tion 2.2.6 (take A = B = L, where L/k is, say, a quadratic field extension).

We can now summarise our results as follows:

Corollary 2.2.8. Let A,B be k-algebras. Then the k-algebra A ⊗k B is central
simple if and only if A and B are central simple.

Proof. Combine Proposition 2.2.6, Proposition 2.2.4 and Proposition 2.2.5. �

In order to proceed further, let us restrict ourselves to finite-dimensional algebras.

Proposition 2.2.9. Let A be a finite-dimensional central simple k-algebra. Then the
morphism ϕ : A⊗k Aop → Endk(A) mapping a⊗ b to x 7→ axb is an isomorphism.

Proof. The map ϕ is a nonzero morphism of k-algebras (because Endk(A) 6= 0, as
A is simple), and its kernel is a two-sided ideal in the ring A⊗k Aop, which is simple by
Proposition 2.2.6. Thus ϕ is injective, and bijective for dimensional reasons. �

Lemma 2.2.10. Let A be a finite-dimensional central simple k-algebra and B ⊂ A a
subalgebra. Then there is a natural isomorphism

ZA(B)⊗k Aop ' EndB(A).

Proof. Consider the isomorphism ϕ : A ⊗k Aop → Endk(A) of Proposition 2.2.9,
and let C = ϕ(B⊗k k) (recall that A is nonzero, being simple). A morphism in Endk(A)
commutes with C if and only if it is B-linear (for the left action on A induced by multi-
plication). Thus

ZA⊗kAop(B ⊗k k) ' ZEndk(A)(C) = EndB(A).

To conclude, note that ZA⊗kAop(B ⊗k k) = ZA(B)⊗k Aop by Lemma 2.2.3. �

We collect in the next statement useful facts concerning the commutant. Part (iii) is
sometimes referred to as the double centraliser theorem.

Proposition 2.2.11. Let A be a finite-dimensional central simple k-algebra and B a
simple subalgebra of A. Let C = ZA(B).

(i) The ring C is simple.
(ii) dimk B · dimk C = dimk A.

(iii) ZA(C) = B.
(iv) The centers of B and C coincide, as subsets of A.
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Proof. By Proposition 2.1.12, there exist a simple B-module S and integers r, n
such that B ' S⊕r and A ' S⊕n as B-modules. The k-algebra D = EndB(S)op is
division by Schur’s Lemma 2.1.2. We have, by Lemma 2.2.10

(2.2.b) C ⊗k Aop ' EndB(A) ' EndB(S⊕n) = Mn(EndB(S)) = Mn(Dop).

Now, by Lemma 2.1.4 (with R = B and e = 1)

(2.2.c) B = EndB(B)op ' EndB(S⊕r)op = Mr(EndB(S))op = Mr(D).

(i): Since Mn(Dop) is simple by Remark 2.1.6 and Proposition 2.1.7 (i), it follows
from Proposition 2.2.5 and (2.2.b) that C is simple.

(ii): Let a = dimk A, b = dimk B, c = dimk C, d = dimkD, s = dimk S. Taking the
dimensions in (2.2.b) and (2.2.c) yields ac = n2d and b = r2d. Since B ' S⊕r and
A ' S⊕n, we have b = rs and a = ns, and therefore ar = bn. Thus

a2b = a2r2d = b2n2d = b2ac,

hence a = bc.
(iii): Clearly B ⊂ ZA(C). The equality follows by dimensional reasons. Indeed, let

a = dimk A, b = dimk B, c = dimk C, z = dimk ZA(C). Then by (i) and (ii), we have
bc = a = cz, so that b = z.

(iv): Let R be a subring of A, and S = ZA(R). Then R ⊂ ZA(S), hence

(2.2.d) Z(R) = R ∩ ZA(R) = R ∩ S ⊂ ZA(S) ∩ S = Z(S).

Taking R = B in (2.2.d) yields Z(B) ⊂ Z(C). Since B = ZA(C) by (iii), taking R = C
in (2.2.d) yields Z(C) ⊂ Z(B). �

Corollary 2.2.12. Let A be a finite-dimensional central simple k-algebra and B a
central simple subalgebra of A. Then the k-algebra ZA(B) is central simple, and

B ⊗k ZA(B) ' A.

Proof. Let C = ZA(B). The k-algebra C is central and simple by Proposition 2.2.11
(iv) and (i). The k-linear map B ⊗k C → A given by b ⊗ c 7→ bc is a morphism of k-
algebras (because B commutes with C). Its kernel is a two-sided ideal in the ring B⊗kC,
which is simple by Proposition 2.2.6. As A 6= 0, the morphism is injective, and bijective
for dimensional reasons, in view of Proposition 2.2.11 (ii). �

3. Skolem–Noether’s Theorem

A theorem in linear algebra asserts that every automorphism of the matrix algebra
Mn(k) is given by conjugation by some matrix. This is a special case of the Skolem–
Noether’s theorem, which applies to any finite-dimensional central simple algebra. Before
proving this theorem, let us make a couple of observations.

Lemma 2.3.1. Let A be a finite-dimensional simple k-algebra. Then two A-modules
of finite dimension over k are isomorphic if and only if they have the same dimension
over k.

Proof. This follows from Proposition 2.1.12. Indeed let S be a simple A-module.
Then every A-module M of finite dimension over k (which is necessarily finitely generated)
is isomorphic to S⊕n for some n ∈ N. Then dimkM = ndimk S, hence the integer n is
determined by dimkM . �
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We will need the following notation. Let h : B → A be a morphism of k-algebras. We
define a B ⊗k Aop-module Ah, by setting Ah = A as a k-vector space, with the module
structure given by letting b⊗ a, where b ∈ B and a ∈ Aop, act on Ah by x 7→ h(b)xa.

Lemma 2.3.2. Let f, g : B → A be morphisms of k-algebras such that Af ' Ag as
B ⊗k Aop-modules. Then there exists an element u ∈ A× such that f(b) = u−1g(b)u for
all b ∈ B.

Proof. Let ϕ : Af → Ag be an isomorphism of B⊗kAop-modules. Set u = ϕ(1) ∈ A.
For any b ∈ B, we have

ϕ(f(b)) = ϕ((b⊗ 1)1) = (b⊗ 1)ϕ(1) = g(b)u,

ϕ(f(b)) = ϕ((1⊗ f(b))1) = (1⊗ f(b))ϕ(1) = uf(b).

To conclude, we prove that v = ϕ−1(1) ∈ A is a two-sided inverse of u. We have

ϕ(vu) = ϕ((1⊗ u)v) = (1⊗ u)ϕ(v) = u = ϕ(1),

so that vu = 1, since ϕ is injective. On the other hand

uv = (1⊗ v)ϕ(1) = ϕ((1⊗ v)1) = ϕ(v) = 1. �

Theorem 2.3.3 (Skolem–Noether). Let A,B be finite-dimensional simple k-algebras.
Assume that A or B is central. If f, g : B → A are morphisms of k-algebras, there exists
an element u ∈ A× such that f(b) = u−1g(b)u for all b ∈ B.

Proof. The k-algebra B ⊗k Aop is simple by Proposition 2.2.6. As dimk A
f =

dimk A = dimk A
g, by Lemma 2.3.1 the B ⊗k Aop-modules Af and Ag are isomorphic,

and the statement follows from Lemma 2.3.2. �

Corollary 2.3.4. Every automorphism of a finite-dimensional central simple k-
algebra A is inner, i.e. of the form x 7→ a−1xa for some a ∈ A×.

Proof. Take B = A and g = idA in Theorem 2.3.3. �
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Exercises

Exercise 2.1. Prove the following converse of Wedderburn’s Theorem: If D is a
division ring and n ≥ 1 an integer, then the ring Mn(D) is artinian simple.

Exercise 2.2. In Proposition 1.3.4, we proved the following statement : if Q,Q′ are
quaternion algebras over a field k (of characteristic 6= 2), then

Q⊗k Q′ 'M4(k)⇐⇒ Q ' Q′.
The proof of “⇐=” was easy, while the proof of “=⇒” was comparatively difficult (in
particular used Albert’s Theorem). Give a new (short) proof of “=⇒”, using “⇐=” and
the results of §2.1 in the lecture notes.

Exercise 2.3. (i) Show that every nonzero ring admits a simple module.
(ii) Let R be a ring, and M a nonzero R-module. Show that there is a submodule N of

M and a quotient S of N such that S is simple.

Exercise 2.4. Let D be a finite-dimensional central division k-algebra, and n an
integer. Show that Mn(k) contains a k-subalgebra isomorphic to D if and only if dimkD |
n.

Exercise 2.5. Let R be a ring and M an R-module. We are going to prove that the
following conditions are equivalent:

(a) The module M is generated by its simple submodules.
(b) The module M is a direct sum of simple R-modules.
(c) Every submodule of M is a direct summand.

The R-module M will be called semisimple if it satisfies the above conditions.

(i) Let Si → M for i ∈ I be a collection of morphisms of R-modules, where each Si
is a simple module. When K ⊂ I, let us write SK =

⊕
i∈K Si, and denote by NK

the kernel of SK → M . Using Zorn’s lemma, show that there is a maximal subset
K ⊂ I such that NK = 0.

(ii) In the situation of (i), show that SI →M and SK →M have the same image.
(iii) Prove that (a) =⇒ (b).
(iv) Prove that (b) =⇒ (c). (Hint: use (i) and (ii) for an appropriate collection of

morphisms Si → Q.)

For the rest of the exercise, we assume that (c) holds, and prove (a). So we let M ′ be
the submodule of M generated by the simple submodules of M , and choose a submodule
M ′′ such that M ′⊕M ′′ = M . We assume that M ′′ 6= 0 and come to a contradiction. By
Exercise 2.3, we know that there are submodules P ⊂ N ⊂M ′′ such that N/P is simple.

(v) Show that N/P is isomorphic to a submodule of N .
(vi) Conclude that (c) =⇒ (a).

Exercise 2.6. A ring is called semisimple if it is semisimple as a module over itself
(see the previous exercise). Prove the following assertions:

(i) Every semisimple ring is a finite direct sum of simple modules.
(ii) Every semisimple ring is artinian.
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(iii) Every artinian simple ring is semisimple.
(iv) Every semisimple ring is isomorphic to a product Mn1

(D1)× · · · ×Mnr (Dr), where
D1, . . . , Dr are division rings and n1, . . . , nr are integers.

(v) The product of two semisimple rings is semisimple.
(vi) A ring is semisimple if and only if it is a finite product of artinian simple rings.

Exercise 2.7. Let D be a division ring of positive characteristic (i.e. there is a prime
number p such that pD = 0.) Show that every finite subgroup of D× is cyclic. (Hint:
you may use the fact that every subgroup of k× is cyclic when k is a finite field).
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CHAPTER 3

Central simple algebras and scalars extensions

After extending scalars appropriately, any finite-dimensional central simple algebra
becomes a matrix algebra over a field. So such algebras may be thought of as twisted
forms of matrix algebras, and as such share many of their properties. This point of view
will be further explored in the next chapters.

Much information on the algebra is encoded in the data of which extensions of the
base field transform it into a matrix algebras; such fields are called splitting fields. We
prove the existence of a separable splitting field, a crucial technical result which will allow
us to use Galois theory later on. The index of the algebra is an integer expressing how far
is the algebra from being split. In this chapter we gather basic information concerning
the behaviour of this invariant under field extensions, and how it relates to the degrees
of splitting fields.

We conclude with a definition of the Brauer group, which classifies finite-dimensional
central simple algebras over a given base field.

1. The index

When L/k is a field extension and A a k-algebra, we will denote by AL the L-algebra
A⊗k L.

Lemma 3.1.1. Let A be a k-algebra and L/k a field extension. Then A is a finite-
dimensional central simple k-algebra if and only if AL is a finite-dimensional central
simple L-algebra.

Proof. Since dimk A = dimLAL and Z(AL) = Z(A) ⊗k L by Proposition 2.2.4,
the k-algebra A is finite-dimensional (resp. central) if and only if the L-algebra AL is
so. Observe that the ring L is simple (Remark 2.1.6). Thus the equivalence follows from
Proposition 2.2.5 and Proposition 2.2.6. �

Lemma 3.1.2. Every finite-dimensional subalgebra of a division k-algebra is division.

Proof. Let D be a division k-algebra, and B a finite-dimensional subalgebra. Let
b be a nonzero element of B. The k-linear map B → B given by left multiplication by b
is injective, because if x ∈ B is such that bx = 0, then 0 = b−1bx = x in D, hence x = 0
in B. By dimensional reasons, this map is surjective. Thus the element 1 ∈ B lies in its
image, so there is b′ ∈ B such that bb′ = 1. Multiplying by b−1 on the left, we deduce
that b−1 = b′ ∈ B. �

Proposition 3.1.3. If k is algebraically closed, the only finite-dimensional division
k-algebra is k.

Proof. Let D be a finite-dimensional division k-algebra. Pick an element x ∈ D.
The k-subalgebra of D generated by x is commutative, hence a field by Lemma 3.1.2. It
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has finite dimension over k, and is thus an algebraic extension of k. By assumption it
must equal k, hence x ∈ k, and finally D = k. �

Corollary 3.1.4. If k is algebraically closed, every finite-dimensional simple k-
algebra is isomorphic to Mn(k) for some integer n.

Proof. This follows from Wedderburn’s Theorem 2.1.13 and Proposition 3.1.3. �

Corollary 3.1.5. If A is a finite-dimensional central simple k-algebra, the integer
dimk A is a square.

Proof. Let k be an algebraic closure of k. The k-algebra Ak is finite-dimensional

central simple by Lemma 3.1.1, hence isomorphic to Mn(k) for some integer n by Corol-
lary 3.1.4. Then dimk A = dimk Ak = n2. �

Definition 3.1.6. When A is a finite-dimensional central simple k-algebra, the in-
teger d ∈ N such that d2 = dimk A is called the degree of A and denoted deg(A).

Observe that deg(AL) = deg(A) for any field extension L/k.

Definition 3.1.7. Two finite-dimensional central simple k-algebras A,B are called
Brauer-equivalent if there exist integers m,n and an isomorphism of k-algebras Mn(A) '
Mm(B).

This defines an equivalence relation on the set of isomorphism classes of finite-
dimensional central simple k-algebras (recall that Mn(Mm(A)) ' Mnm(A) for any k-
algebra A). Wedderburn’s Theorem 2.1.13 implies that each Brauer-equivalence class
contains exactly one isomorphism class of division algebras.

Definition 3.1.8. When A is a finite-dimensional central simple k-algebra, the degree
of a division algebra Brauer-equivalent to A is called the index of A and denoted ind(A).

Observe that ind(A) divides deg(A), and that ind(A) depends only on the Brauer-
equivalence class of A.

Lemma 3.1.9. Let A be a finite-dimensional central simple k-algebra, and L/k a field
extension. Then

ind(AL) | ind(A).

Proof. Let D be a finite-dimensional central division k-algebra such that A '
Mn(D) for some integer n. Then AL 'Mn(DL), hence

ind(AL) = ind(DL) | deg(DL) = deg(D) = ind(A). �

2. Splitting fields

Definition 3.2.1. A finite-dimensional central simple k-algebra is called split if it is
isomorphic to the matrix algebra Mn(k) for some integer n (which must then coincides
with deg(A)). A field extension L/k is called a splitting field of A if the L-algebra
AL = A⊗k L is split.

In this section, we obtain certain bounds on the degree of finite splitting fields, and
prove the existence of such fields having the minimal possible degree.
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Proposition 3.2.2. Let A be a finite-dimensional central simple k-algebra, and L/k
an extension of finite degree n splitting A. Then the algebra A is Brauer-equivalent
(Definition 3.1.8) to a finite-dimensional central simple k-algebra of degree n containing
L as a subalgebra.

Proof. Let d = deg(A) and V = L⊕d. We view L as a subalgebra of EndL(V )
by mapping l ∈ L to the endomorphism x 7→ lx. The isomorphisms of L-algebras
Aop ⊗k L ' Md(L)op ' Md(L) ' EndL(V ) allow us to view Aop as a k-subalgebra
of EndL(V ); in the algebra EndL(V ), every element of L commutes with Aop. Let us
view EndL(V ) as a subalgebra of Endk(V ), and set B = ZEndk(V )(A

op). Then L ⊂ B.
It follows from Proposition 2.2.11 (i) and (iv) that B is a central simple k-algebra. By
Proposition 2.2.11 (ii) we have dimk A

op · dimk B = dimk Endk(V ). Since dimk A
op = d2

and dimk V = dn, we deduce that deg(B) = n. Finally, by Proposition 2.2.9 and Corol-
lary 2.2.12 we have

Md2(B) ' B ⊗k Endk(Aop) ' B ⊗k Aop ⊗k A ' Endk(V )⊗k A 'Mdn(A),

so that B is Brauer-equivalent to A. �

Corollary 3.2.3. Let A be a finite-dimensional central simple k-algebra, and L/k
be a field extension of finite degree splitting A. Then

ind(A) | [L : k].

Proof. By the Proposition 3.2.2, we may assume that deg(A) = [L : k]. Then
ind(A) divides deg(A) = [L : k]. �

Lemma 3.2.4. Let A be a finite-dimensional central simple k-algebra, and L ⊂ A a
subalgebra. Assume that L is a field. Then [L : k] | deg(A), with equality if and only if
L = ZA(L).

Proof. Since L is commutative, we have L ⊂ ZA(L). The ring L being simple
(Remark 2.1.6), by Proposition 2.2.11 (ii) we have

deg(A)2 = [L : k] · dimk ZA(L) = [L : k]2 · dimLZA(L),

from which the statement follows. �

Proposition 3.2.5. Let D be a finite-dimensional central division k-algebra, and
L ⊂ D a commutative subalgebra. Then L is a field, and the following are equivalent:

(i) L = ZD(L)
(ii) L is maximal among the commutative subalgebras of D.

(iii) [L : k] = ind(D).
(iv) L splits D.

Proof. The first assertion follows from Lemma 3.1.2.
(i) ⇔ (iii) : This has been proved in Lemma 3.2.4.
(iv)⇒ (iii) : Since [L : k] | ind(D) by Lemma 3.2.4, this follows from Corollary 3.2.3.
(i) ⇒ (ii) : Any commutative k-subalgebra of D containing L must be contained in

ZD(L).
(ii) ⇒(i) : Let x ∈ ZD(L). The k-subalgebra of D generated by L and x is commu-

tative, hence equals L. Thus x ∈ L.
(i) ⇒ (iv) : If L = ZD(L), then (Dop)L ' EndL(D) by Lemma 2.2.10. Thus L splits

Dop, hence also D. �
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Definition 3.2.6. A subalgebra L satisfying the equivalent conditions of Proposi-
tion 3.2.5 is called a maximal subfield.

In view of the characterisation (ii) in Proposition 3.2.5, maximal subfields always
exist in finite-dimensional central division k-algebras (by dimensional reasons).

Corollary 3.2.7. Let A be a finite-dimensional central simple k-algebra. Then A
is split by a field extension of k of degree ind(A).

Proof. We may assume that A is division, and use the observation just above. �

Proposition 3.2.8. Let A be a finite-dimensional central simple k-algebra, and L/k
a field extension of finite degree. Then

ind(AL) | ind(A) | [L : k] ind(AL).

Proof. The first divisibility was established in Lemma 3.1.9. By Corollary 3.2.7,
there exists a field extension E/L splitting the L-algebra AL and such that [E : L] =
ind(AL). Then E is a splitting field for the k-algebra A, and it follows from Corollary 3.2.3
that

ind(A) | [E : k] = [L : k][E : L] = [L : k] ind(AL). �

Corollary 3.2.9. If D is a finite-dimensional central division k-algebra and L/k a
field extension of finite degree coprime to deg(D), then DL is division.

Proof. Proposition 3.2.8 yields

ind(DL) = ind(D) = deg(D) = deg(DL),

which implies that DL is division. �

Proposition 3.2.10. Let A,B be finite-dimensional central simple k-algebras. Then

ind(A⊗k B) | ind(A) ind(B) | ind(A⊗k B) gcd(ind(A)2, ind(B)2).

Proof. By Corollary 3.2.7, there exists an extension L/k splitting the k-algebra A
and such that [L : k] = ind(A). Then (A ⊗k B)L ' Md(BL), where d = deg(A), hence
ind((A ⊗k B)L) = ind(BL). Applying Proposition 3.2.8 to the k-algebra A ⊗k B, and
Lemma 3.1.9 to the k-algebra B yields

ind(A⊗k B) | [L : k] ind((A⊗k B)L) = ind(A) ind(BL) | ind(A) ind(B),

proving the first divisibility. Applying Proposition 3.2.8 to the algebra B, and Proposi-
tion 3.2.8 to the algebra A⊗k B yields

ind(B) | [L : k] ind(BL) = ind(A) ind((A⊗k B)L) | ind(A) ind(A⊗k B).

Similarly ind(A) | ind(B) ind(A⊗k B), and the second divisibility follows. �

Corollary 3.2.11. If D,D′ are finite-dimensional central division k-algebras of co-
prime degrees, then D ⊗k D′ is division.

Proof. Proposition 3.2.10 yields

ind(D ⊗k D′) = ind(D) ind(D′) = deg(D) deg(D′) = deg(D ⊗k D′),

which implies that D ⊗k D′ is division. �
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3. Separable splitting fields

We have seen that every finite-dimensional central simple k-algebra splits over a
finite extension of k (Corollary 3.2.7). In this section, we prove that this extension may
additionally be chosen to be separable.

Recall that an irreducible polynomial P ∈ k[X] is called separable if it has no multiple
root in every field extension of k. Equivalently P is separable if and only if it is prime
to its derivative P ′ ∈ k[X]. A field extension L/k is called separable if every element of
L is the root of an irreducible separable polynomial with coefficients in k (in particular
separable will always be algebraic).

Proposition 3.3.1. Let D be a finite-dimensional division k-algebra. If D is not
commutative, then D contains a nontrivial separable field extension of k.

Proof. By Lemma 3.1.2, the k-subalgebra generated by any element of D is a field
(being commutative). Assume for a contradiction that no such field is a nontrivial separa-
ble extension of k. Since algebraic extensions of fields of characteristic zero are separable,
we may assume that k has characteristic p > 0. Let d ∈ D. Since D is finite-dimensional
over k, there is a nonzero polynomial P ∈ k[X] such that P (d) = 0. Since D contains no
nonzero zerodivisors (being division), we may assume that P is irreducible. We may find
a power q of p such that P (X) = Q(Xq), where Q ∈ k[Y ] and Q 6∈ k[Y p]. The polynomial
Q is irreducible (because P is so), hence separable (as it does not lie in k[Y p]). Since
Q(dq) = 0, we must have dq ∈ k, by our assumption.

Let now a ∈ D be such that a 6∈ Z(D). Consider the k-algebra automorphism
σ : D → D given by x 7→ axa−1. As we have just seen, there is a power q of p such that
aq ∈ k, so that σq = id. We thus have (σ − id)q = σq − id = 0, since k has characteristic
p. Let f be the largest integer such that (σ − id)f 6= 0, and let c ∈ D be such that
(σ− id)f (c) 6= 0. Since a 6∈ Z(D), we have σ 6= id, and thus f ≥ 1. Let x = (σ− id)f−1(c)
and y = (σ− id)f (c) = σ(x)− x. Since (σ− id)f+1 = 0, we have σ(y) = y. Set z = y−1x.
Then

σ(z) = σ(y)−1σ(x) = y−1(y + x) = 1 + z.

As we have seen above, there is a power r of p such that zr ∈ k. Then

zr = σ(zr) = σ(z)r = (1 + z)r = 1 + zr

(as k has characteristic p), a contradiction. �

Corollary 3.3.2. Assume that k is separably closed (i.e. admits no nontrivial sep-
arable extension). Then every finite-dimensional division k-algebra is commutative. In
particular, every finite-dimensional central simple k-algebra splits.

Proof. The first statement follows from Proposition 3.3.1. In particular k is the
only finite-dimensional central division k-algebra, which implies the second statement by
Wedderburn’s Theorem 2.1.13. �

Theorem 3.3.3 (Köthe). Every finite-dimensional central division k-algebra contains
a maximal subfield which is separable over k.

Proof. Let D be a finite-dimensional central division k-algebra. Recall that every
commutative subalgebra of D is a field by Lemma 3.1.2. Let L be a commutative sub-
algebra of D, which is maximal among those which are separable as a field extension of
k. Let E = ZD(L). As L is commutative, we have L ⊂ E. The L-algebra E is division
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by Lemma 3.1.2. If E is not commutative, using Proposition 3.3.1 we find a separable
extension L′/L such that L ( L′ ⊂ E. The field extension L′/k is then separable (being
a composite of separable extensions), contradicting the maximality of L. Thus E is com-
mutative. Therefore E ⊂ ZD(E) = L by Proposition 2.2.11 (iii). We have proved that
L = E = ZD(L), so that L is a maximal subfield. �

Corollary 3.3.4. Let A be a finite-dimensional central simple k-algebra. Then A
is split by a separable field extension of k of degree ind(A).

Proof. We may assume that A is division, in which case the statement follows from
Theorem 3.3.3 (in view of Proposition 3.2.5). �

4. Finite division rings, real division algebras

We are now in position to prove two classical results concerning division algebras
over specific fields. Although these results may seem quite different in nature, both
proofs crucially rely on the precise understanding of the finite extensions of the respective
base field (namely Fq and R).

Theorem 3.4.1 (Wedderburn, 1905). Every division ring of finite cardinality is a
field.

Proof. Let D be a division ring of finite cardinality. Its center k is a field by
Lemma 2.2.2, and denote by q the cardinality of k. Then D is a finite-dimensional central
division k-algebra; let n be its degree. Let L be a maximal subfield of D. Then [L : k] = n
by Proposition 3.2.5 (iii).

For d ∈ D×, the subset K = d−1Ld ⊂ D is a k-subalgebra. Moreover the map
L → K given by x 7→ d−1xd is an isomorphism of k-algebras. In particular K is a field
and [K : k] = [L : k] = n. It follows from Proposition 3.2.5 (iii) that K is a maximal
subfield of D. We have thus defined an action of the group D× on the set of maximal
subfields of D.

By the theory of finite fields, the extension L/k is isomorphic to the splitting field
of the polynomial Xqn − X ∈ k[X]. Therefore if L′ is another maximal subfield of
D, there exists an isomorphism of k-algebras σ : L → L′. Applying Skolem–Noether’s

Theorem 2.3.3 to the pair of morphisms L ⊂ D and L
σ−→ L′ ⊂ D (recall that L is a simple

ring, being a field) shows that there exists e ∈ D× such that L′ = σ(L) = e−1Le ⊂ D.
This proves that the above action is transitive.

The set N = {d ∈ D×|d−1Ld = L} is a subgroup of D×, and the number of maximal
subfields of D is [D× : N ]. Since any element of D is contained in a maximal subfield (by
Proposition 3.2.5 (ii)), the set D×−{1} is the union of the sets K×−{1}, where K runs
over the maximal subfields of D. Thus

[D× : N ] · (|L×| − 1) ≥ |D×| − 1 = [D× : N ] · |N | − 1.

Since N contains L×, we must have [D× : N ] = 1 and L× = N . We deduce that D = L,
hence D is commutative. �

Theorem 3.4.2 (Frobenius, 1877). Every finite-dimensional division R-algebra is
isomorphic to R, or to C, or to the quaternion R-algebra (−1,−1).

Proof. Let D be a finite-dimensional division R-algebra, and k its center. Then k
is a finite extension of R, hence k = R or k ' C. In the latter case, we have D ' C
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by Proposition 3.1.3. So we may assume that k = R. Then D splits over the degree
two extension C/R (by Corollary 3.1.4) hence ind(D) ∈ {1, 2} by Corollary 3.2.3. If
ind(D) = 1, then D = R. Otherwise D is a quaternion R-algebra by Corollary 1.2.6; such
an algebra is division if and only if it is isomorphic to (−1,−1) by Example 1.1.18. �

5. The Brauer group, I

Let us denote by [A] the Brauer-equivalence class (Definition 3.1.8) of a finite-dimensional
central simple k-algebra A. In view of Proposition 2.2.9, the operation ([A], [B]) 7→ A⊗kB
endows the set of equivalence classes with the structure of an abelian group, where

0 = [k] , [A] + [B] = [A⊗k B] , −[A] = [Aop].

Definition 3.5.1. The group of Brauer-equivalence classes is called the Brauer group
of k, and is denoted by Br(k).

Remark 3.5.2. When A,B are finite-dimensional central simple k-algebras with B ⊂
A, the Brauer-class of the commutant ZA(B) can be expressed using Corollary 2.2.12:

[ZA(B)] = [A]− [B] ∈ Br(k).

Example 3.5.3. It follows respectively from Corollary 3.3.2, Theorem 3.4.1 and The-
orem 3.4.2 that:

(i) Br(k) = 0 when k is separably closed.
(ii) Br(k) = 0 when k is finite.
(iii) Br(R) = Z/2.

Proposition 3.5.4. Let A,B be finite-dimensional central simple k-algebras such
that [B] belongs to the subgroup generated by [A] in Br(k). Then ind(B) | ind(A).

Proof. There is an integer i such that A⊗i = A⊗k · · ·⊗kA is Brauer-equivalent to B,
which implies that ind(A⊗i) = ind(B). By Corollary 3.2.7, we may find an extension L/k
of degree ind(A) splitting A. Then the L-algebra (A⊗i)L is isomorphic to AL⊗L · · ·⊗LAL,
hence splits because each AL splits. Thus by Lemma 3.1.9

ind(B) = ind(A⊗i) | [L : k] = ind(A). �

Corollary 3.5.5. The index of a finite-dimensional central simple k-algebra A de-
pends only on the subgroup of Br(k) generated by [A].

Definition 3.5.6. If L/k is a field extension, we denote by Br(L/k) the subgroup of
Br(k) consisting of those classes of algebras split by L.

Observe that, if L/k is a field extension, then the map Br(k) → Br(L) given by
[A] 7→ [A⊗k L] is a group morphism, whose kernel is Br(L/k).

Example 3.5.7. Assume that k has characteristic 6= 2, and let L = k(
√
a) for some

a ∈ k×. Then

Br(L/k) = {[(a, b)], b ∈ k×}.
Indeed any element of Br(k) is of the form [D], where D is a finite-dimensional central
division k-algebra. If [D] ∈ Br(L/k), then ind(D) ∈ {1, 2} by Corollary 3.2.3. In any
case [D] is the class of a quaternion algebra (possibly split), and we conclude using
Proposition 1.2.9.
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Let us observe that split nontrivial finite-dimensional central simple algebras contain
nilpotent elements, which distinguishes them from division algebras:

Remark 3.5.8. Let A 6= k be a split finite-dimensional central simple algebra. Then
A contains an element x 6= 0 such that x2 = 0. Indeed we may assume that A = Mr(k)
for some r > 1, and then take for x the matrix whose only nontrivial entry is 1 in the
upper right corner.

Lemma 3.5.9. Let L/k be a field extension. Then

Br(L/k) =
⋃
K

Br(K/k) ⊂ Br(k),

where K runs over the finitely generated field extensions of k contained in L.

Proof. We show that every finite-dimensional central division k-algebra D splitting
over L splits over a finitely generated subextension of L, proceeding by induction on
the degree of D (for all fields k simultaneously). We may assume that D 6= k. Then
D ⊗k L contains an element x 6= 0 such that x2 = 0 (Remark 3.5.8). Writing x =
d1⊗λ1 + · · ·+dn⊗λn, where d1, . . . , dn ∈ D and λ1, . . . , λn ∈ L, we see that x belongs to
D⊗kK ′, where K ′ is the subextension of L generated by λ1, . . . , λn. Then D⊗kK ′ is not
division (as it contains the nonzero noninvertible element x), hence is Brauer-equivalent
to a central division algebra of strictly smaller degree, by Wedderburn’s Theorem 2.1.13.
So by induction it splits over a finitely generated extension K of K ′. Then K is a finitely
generated extension of k splitting D. �

Proposition 3.5.10. If L is a purely transcendental extension of k, then

Br(L/k) = 0.

Proof. If L = k(ti, i ∈ I), then every element of L belongs to a subextension of
L/k generated by finitely many ti’s (such element is a quotient of two polynomials, and a
given polynomial involves only finitely many variables). Therefore every finitely generated
subextension K/k is contained in a subextension of L/k generated by finitely many ti’s.
In view of Lemma 3.5.9, we may thus assume that I is finite. Using induction we reduce
to the case |I| = 1, that is L = k(t). Let D 6= k be a finite-dimensional central division
k-algebra which splits over k(t). Then D ⊗k k(t) contains an element x 6= 0 such that
x2 = 0 (Remark 3.5.8). We may write

x =

n∑
i=1

di ⊗ (fi/gi)

where di ∈ D and fi, gi ∈ k[t] for all i. Choosing such a decomposition with n minimal,
we see that the elements di ∈ D must be linearly independent over k. Multiplying x with
an appropriate element of k[t], we may assume that g1 = · · · = gn = 1, and that there is
j ∈ {1, . . . , n} such that fj is not divisible by t. In particular x ∈ D⊗k k[t]. Consider the
k-linear map e : D ⊗k k[t]→ D given by d⊗ f 7→ df(0). Then

e(x) =

n∑
i=1

difi(0) ∈ D

is nonzero (as the elements di are linearly independent over k and fj(0) 6= 0). As e is a
ring morphism, we have e(x)2 = e(x2) = 0. Thus e(x) is a nonzero noninvertible element
of the division algebra D, a contradiction. �
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Exercises

Exercise 3.1. The purpose of this exercise is to describe another proof of the fact
that every finite-dimensional central division k-algebra contains a maximal subfield which
is separable over k (Theorem 3.3.3).

(i) Let P = pnX
n+· · ·+p0 and Q = qmX

m+· · ·+q0 be polynomials in k[X]. Construct
a matrix S ∈Mm+n(k) having the following property. If A = am−1X

m−1 + · · ·+ a0

and B = bn−1X
n−1 + · · ·+ b0 are polynomials in k[X], writing

S



am−1

...
a0

bn−1

...
b0


=



um+n−1

...

...

...

...
u0


we have

PA+QB = um+n−1X
m+n−1 + · · ·+ u0 ∈ k[X].

(ii) Assume that pn 6= 0 and qm 6= 0. Show that P and Q admit a nontrivial common
factor if and only if detS = 0. (The value detS is called the resultant of P and Q.)

(iii) Fix an integer d. Show that there exists a polynomial δ ∈ k[X0, . . . , Xd] such that
δ(a0, . . . , ad) 6= 0 if and only if the polynomial adX

d + · · ·+ a0 is separable. (Hint:
a polynomial is separable if and only if it is prime to its derivative.)

Let A be a finite-dimensional k-algebra and a ∈ A. The kernel of the k-algebra
morphism k[X]→ A is a principal ideal. Recall that the minimal polynomial of a is the
unique generator of that ideal having leading coefficient 1.

(iv) Let L/k be a field extension. If P ∈ k[X] is the minimal polynomial of a in the
k-algebra A, show that its image P ∈ L[X] is the minimal polynomial of a ⊗ 1 in
the L-algebra A⊗k L.

(v) Let M ∈ Mn(k) and χ ∈ k[X] its characteristic polynomial. Show that if χ is
separable, then χ is the minimal polynomial of M .

(vi) Fix an integer n. Show that there exists a polynomial π ∈ k[Xi,j , 1 ≤ i, j ≤ n] having
the following property: if M is a matrix in Mn(k) having coefficients mi,j ∈ k for
1 ≤ i, j ≤ n, then π(m1,1, . . . ,mn,n) 6= 0 if and only if the minimal polynomial of
M ∈Mn(k) is separable of degree n. (Hint : use (iii) of the previous exercise.)

Let now D be a central division k-algebra of degree n, and F an algebraic closure of
k.

(vii) Let e1, . . . , en2 be a k-basis ofD. Show that there exists a polynomial ρ ∈ F [X1, . . . , Xn2 ]
having the following property: if x ∈ D has coefficients x1, . . . , xn2 in the basis
e1, . . . , en2 , then ρ(x1, . . . , xn2) 6= 0 if and only if the minimal polynomial of x in
the k-algebra D is separable of degree n.

(viii) Assume that k is infinite. Let L/k be a field extension and d an integer. Let P ∈
L[X1, . . . , Xd] be a polynomial. Assume that there exist y1, . . . , yd ∈ L such that
P (y1, . . . , yd) 6= 0. Show that there exist x1, . . . , xd ∈ k such that P (x1, . . . , xd) 6= 0.
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(Hint: find x1, . . . , xm ∈ k by induction on m so that P (x1, . . . , xm, ym+1, . . . , yd) 6=
0.)

(ix) Conclude that D contains a separable extension of k of degree n. (Hint: observe
that the case when k is finite is easy.)
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CHAPTER 4

Infinite Galois theory

In this chapter, we develop the tools permitting to work with the absolute Galois
group, which is almost always infinite. It is however profinite, and such groups carry a
nontrivial topology. Compared with finite Galois theory, the key point is that one must
systematically keep track of this topology, and in particular restrict one’s attention to
continuous actions of the Galois group. Although most arguments involving the absolute
Galois group can ultimately be reduced to finite Galois theory, this point of view is
extremely useful, and permits a very convenient formulation of many results and proofs.

The chapter concludes with a basic treatment of Galois descent, a technique that
will be ubiquitous in the sequel. The general philosophy is that extending scalars to a
separable closure is a reversible operation, as long as one keeps track of the action of the
absolute Galois group.

1. Profinite sets

We begin this chapter with basic facts and definitions concerning profinite sets, which
will allow us to manipulate infinite Galois groups later on.

Definition 4.1.1. A directed set is a nonempty set A, equipped with a partial order
≤, such that for any α, β ∈ A, there exists γ ∈ A such that α ≤ γ and β ≤ γ.

Definition 4.1.2. Let (A,≤) be a directed set. An inverse system of sets (indexed
by A) consists of:

— for each α ∈ A a set Eα,
— for each α ≤ β in A a map fβα : Eβ → Eα (called transition map).

These data must satisfy the following conditions:

(i) For each α ∈ A, we have fαα = idEα .
(ii) For each α ≤ β ≤ γ, we have fβα ◦ fγβ = fγα.

Definition 4.1.3. The inverse limit of an inverse system (Eα, fβα) is defined as

E = lim
←−

Eα =
{

(eα) ∈
∏
α∈A

Eα such that fβα(eβ) = eα for all α ≤ β in A
}
.

It is equipped with projections maps πα : E → Eα for every α ∈ A, such that fβα ◦
πβ = πα for all α ≤ β. It enjoys the following universal property: if sα : S → Eα is a
collection of maps satisfying fβα ◦ sβ = sα for all α ≤ β, then there is a unique map
s : S → E such that sα = πα ◦ s for all α ∈ A.

Observe that (Eα), (E′α) are inverse systems indexed by the same directed set A and
E′α → Eα are maps compatible with the transition maps, there is a unique morphism
lim
←−

E′α → lim
←−

Eα compatible with the projection maps.
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Definition 4.1.4. Let A be directed set, and E the inverse limit of finite sets Eα for
α ∈ A. The profinite topology on the set E, is the topology generated by open subsets of
the form π−1

α {x} for α ∈ A and x ∈ Eα, where πα : E → Eα is the projection map.

Definition 4.1.5. A topological space E is called a profinite set if it is an inverse
limit of finite sets Eα for α ∈ A, for some directed set A, the topology of E being the
profinite topology.

Let us fix an inverse system of finite sets Eα for α ∈ A, where A is a directed set,
with transition maps fαβ , inverse limit E, and projection maps πα : E → Eα.

Lemma 4.1.6. Every open subset of E is a union of subsets of the form π−1
α {x} where

α ∈ A and x ∈ Eα.

Proof. Let U ⊂ E be an open subset, and u ∈ U . By definition of the profinite
topology, there are α1, . . . , αn ∈ A and xi ∈ Eαi for i = 1, . . . , n such that the set
π−1
α1
{x1} ∩ · · · ∩ π−1

αn{xn} is contained in U , and contains u. Let us choose α ∈ A such

that αi ≤ α for all i ∈ {1, . . . , n} (recall that A 6= ∅). Set x = πα(u). Then u ∈ π−1
α {x}.

On the other hand π−1
α {x} ⊂ π−1

αi {xi} for all i, hence π−1
α {x} ⊂ U . �

Lemma 4.1.7. Every closed subset of a profinite set is profinite.

Proof. Let F ⊂ E be a closed subset. For each α ∈ A, let Fα = πα(F ), and set
F ′ = lim

←−
Fα. We may F ′ as a subset of E; as such it contains F . Conversely, let f ∈ F ′.

For each α ∈ A, let fα = πα(f) ∈ Fα. If U is an open neighborhood of f in E, it
contains π−1

α {fα} for some α ∈ A by Lemma 4.1.6. Then π−1
α {fα} ∩ F 6= ∅ as F → Fα

is surjective. Thus F meets every neighborhood of every element of F ′. Since F is closed
in E, this implies that F = F ′. The topology induced on the subset F ⊂ E is generated
by the open subsets π−1

α {x} ∩ F where x ∈ Eα and α ∈ A. Such a subset is empty if
x 6∈ Fα, and coincides with the preimage of x under the projection map F ′ → Fα when
x ∈ Fα. It follows that the induced topology on F coincides with the profinite topology
on F ′. �

Lemma 4.1.8. The inverse limit of an inverse system of nonempty finite sets is
nonempty.

Proof. Assume that each Eα is nonempty. Let us define a subsystem as a collection
of subsets Tα ⊂ Eα for each α ∈ A such that fβα(Tβ) ⊂ Tα for each α ≤ β. Consider
the set T of all subsystems (Tα) such that each Tα is nonempty. We may order such
subsystems by inclusion. Consider a totally ordered family of subsystems (Tα)i ∈ T , for
i ∈ I. For a fixed α ∈ A, let us set Sα =

⋂
i∈I(Tα)i. Since each (Tα)i is nonempty, so

is Sα (here we use the finiteness of Eα), and therefore Sα ∈ T . Thus by Zorn’s lemma,
there is a (possibly nonunique) minimal element of (Tα) ∈ T .

Consider the subsystem (T ′α) defined by T ′α =
⋂
α≤β fβα(Tβ). Let α ∈ A. Since Tα

is finite, we may write T ′α = fβ1α(Tβ1) ∩ · · · ∩ fβnα(Tβn) where α ≤ βi for i = 1, . . . , n.
Choose β ∈ A such that βi ≤ β for all i = 1, . . . , n. Then T ′α contains the set fβα(Tβ)
which is nonempty, since Tβ is nonempty. We have proved that (T ′α) ∈ T . By minimality
of (Tα), we deduce that (T ′α) = (Tα); in other words the maps Tβ → Tα for α ≤ β are
surjective.
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Now let us fix γ ∈ A and x ∈ Tγ . For α ∈ A, we set

Sα =

{
preimage of {x} under Tα → Tγ if γ ≤ α,
Tα otherwise.

Then (Sα) is a subsystem contained in (Tα). By surjectivity of the maps Tα → Tγ when
γ ≤ α, it follows that (Sα) ∈ T . By minimality of (Tα), we deduce that (Sα) = (Tα).
We have Sγ = {x}, and thus Tγ = {x}. We have proved that each Tα is a singleton, say
Tα = {xα}. The elements xα ∈ Eα then define an element of lim

←−
Eα. �

Proposition 4.1.9. Every profinite set is compact.

Proof. Let Ui for i ∈ I be a family of open subsets covering E. We need to find
a finite subset J ⊂ I such that the subsets Ui for i ∈ J cover E. While doing so, by
Lemma 4.1.6 we may assume that each Ui is of the form π−1

αi {xi}, where αi ∈ A and
xi ∈ Eα.

For each α ∈ A, let Fα ⊂ Eα be the subset consisting of those elements x such
that fααi(x) 6= xi for every i ∈ I such that αi ≤ α. Then for any α ≤ β, we have
fβα(Fβ) ⊂ Fα, hence the sets Fα for α ∈ A form an inverse system, whose transition
maps are the restrictions of the maps fβα.

Assume that Fα = ∅ for some α ∈ A. Then Eα is covered by subsets of the form
Vi = f−1

ααi{xi}. As Eα is finite, it is covered by finitely many such subsets, and thus

E = π−1
α Eα is covered by finitely many subsets of the form π−1

α Vi = Ui. Thus we are
done in this case.

Therefore we may assume that Fα 6= ∅ for each α ∈ A. Then lim
←−

Fα contains an

element by Lemma 4.1.8. Its image in y ∈ E satisfies πα(y) ∈ Fα ⊂ Eα for all α ∈ A, and
in particular y belongs to no Ui. This contradicts the fact that the subsets Ui for i ∈ I
cover E. �

Remark 4.1.10. Proposition 4.1.9 and Lemma 4.1.8 may also be viewed as conse-
quences of Tikhonov’s Theorem, asserting that a product of compact topological spaces
is compact.

Remark 4.1.11. The sets Fα = imπα ⊂ Eα for an inverse system. Let F be its
inverse limit. The natural map F → E is continuous, open, and bijective, and is therefore
a homeomorphism. Thus (replacing Eα with Fα) we can always represent a profinite set
as an inverse limit of finite sets in such a way that the projection maps are surjective.
Note that this implies that the transition maps are also surjective.

Conversely:

Lemma 4.1.12. Assume that each Eα is finite, and that the transition maps Eβ → Eα
for α ≤ β are surjective. Then the projection maps πα : E → Eα are surjective.

Proof. Fix γ ∈ A and x ∈ Eγ . Define an inverse system by

Fα =

{
preimage of {x} under Eα → Eγ if γ ≤ α ,
Eα otherwise.

Then each Fα is nonempty and finite, hence lim
←−

Fα contains an element by Lemma 4.1.8.

Its image in y ∈ E satisfies πγ(y) = x. �
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2. Profinite groups

We now specialise to the case of profinite groups, and gather the general results that
will be applied to Galois groups.

Definition 4.2.1. When each Eα appearing in Definition 4.1.2 is a group and the
transition maps fβα are group morphisms, we say that Eα is an inverse system of groups.
Its inverse limit is naturally a group, and the projections maps πα are group morphisms.
When each Eα is finite, the topological group E is called a profinite group.

Example 4.2.2. Every finite group is a profinite group, whose topology is discrete
(take for A a singleton).

Example 4.2.3. Let p be a prime number. The groups Z/pnZ for n ∈ N, together
with the maps Z/pnZ → Z/pmZ for m ≤ n given by (1 mod pn) 7→ (1 mod pm) yield
an inverse system of groups, whose limit is the profinite group denoted by Zp.

Example 4.2.4. The groups Z/nZ for n ∈ N, together with the maps Z/nZ→ Z/mZ
for m | n given by (1 mod n) 7→ (1 mod m) yield an inverse system of groups, whose

limit is the profinite group denoted by Ẑ.

Let us fix a profinite group Γ. We choose a directed set A and an inverse system
of finite groups Γα for α ∈ A such that Γ = lim

←−
Γα, and denote by πα : Γ → Γα the

projections. We also define the subgroups Uα = kerπα. By Remark 4.1.11, we can
assume that each projection morphism πα is surjective, and thus identify each Γα with
Γ/Uα.

Lemma 4.2.5. (i) Let U ⊂ Γ be an open subset and u ∈ U . Then there exists α ∈ A
such that uUα ⊂ U .

(ii) A subgroup of Γ is open if and only if it is closed and has finite index.
(iii) If a subgroup of Γ contains an open subgroup, it is open.

Proof. (i) : By Lemma 4.1.6 there exist α ∈ A and x ∈ Eα such that π−1
α {x} is

contained in U and contains u. Then uUα ⊂ π−1
α {x}.

(ii) : Let U ⊂ Γ be an open subgroup, and S its complement in Γ. Then S is the union
of the subsets γU for γ ∈ S. Such subsets are images of U under a self-homeomorphism
of Γ (namely, left multiplication by γ), hence are open, so that S is open, proving that U
is closed. By (i) (with u = 1) the subgroup U contains Uα for some α ∈ A. Certainly Uα
has finite index in Γ (as Γ/Uα ' Γα), so that U has finite index in Γ.

Let now H ⊂ Γ be a closed subgroup of finite index. Its complement is the union of
subsets γH where γ runs over a finite subset of Γ (a set of representatives of Γ/H), hence
is closed. Thus H is open.

(iii) : Let H ⊂ Γ be a subgroup containing an open subgroup U . Then H = HU
is the union of the subsets hU for h ∈ H. Such subsets are images of U under a self-
homeomorphism of Γ, hence are open, so that H is open. �

Remark 4.2.6. Let U be the set of open normal subgroups of Γ, ordered by letting
U ≤ V when V ⊂ U . Then U is a directed set, and the groups Γ/U for U ∈ U form an
inverse system of finite groups, whose inverse limit is isomorphic to Γ, as a topological
group (exercise). Thus every profinite group admits a canonical representation as an
inverse limit.
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Definition 4.2.7. Let p be a prime number. Recall that a finite group is called a
p-group if its cardinality is a power of p. A profinite group is called a pro-p-group if the
index of every open subgroup is a power of p.

Lemma 4.2.8. The profinite group Γ is a pro-p-group if and only if each Γα is a
p-group.

Proof. If Γ is a pro-p-group, then |Γα| = |Γ/Uα| is a power of p. Conversely assume
that each Γα is a p-group. Let U be an open subgroup of Γ. By Lemma 4.2.5 (i) with
u = 1, we find an index α such that Uα ⊂ U . Let Vα = U/Uα. Then the index of U in Γ
coincides with the index of Vα in Γα, hence is a power of p, since Γα is a p-group. �

Definition 4.2.9. A subgroup P of Γ is called a pro-p-Sylow subgroup if all the
following conditions are satisfied:

(i) P is a closed subgroup of Γ,
(ii) P is a pro-p-group,
(iii) for every open normal subgroup U of Γ, the image of P in Γ/U has index prime to

p.

Observe that if P is a pro-p-Sylow subgroup of Γ, then the image of P in Γ/U is a
p-Sylow subgroup, for every open normal subgroup U of Γ.

Proposition 4.2.10. The profinite group Γ admits a pro-p-Sylow subgroup.

Proof. For each α ∈ A, let Sα be the set of p-Sylow subgroups of Γα = Γ/Uα,
which is finite and nonempty by Sylow’s Theorem. If α ≤ β in A, the map Γβ → Γα
sends elements of Sβ to elements of Sα, because the image of a p-Sylow subgroup under
a surjective morphism of finite groups is a p-Sylow subgroup (exercise). Thus the sets Sα
form an inverse system indexed by A, whose inverse limit S is nonempty by Lemma 4.1.8.
Any element of S is represented by a collection of p-Sylow subgroups Pα ⊂ Γα for α ∈ A,
such that for any α ≤ β in A the morphism Γβ → Γα maps Pβ onto Pα. The group
P = lim

←−
Pα is naturally a subgroup of Γ, and is a pro-p-group. The subset P ⊂ Γ is

closed, being the intersection of the preimages of Pα ⊂ Γα for α ∈ A (by construction of
the inverse limit). It follows from Lemma 4.1.12 (applied to the system Pα for α ∈ A)
that for each α ∈ A the image of P in Γα is the p-Sylow subgroup Pα. Now any an open
subgroup U of Γ contains Uα for some α ∈ A, and the image of P in Γ/U coincides with
the image of Pα under the surjective morphism Γα = Γ/Uα → Γ/U , and in particular has
index prime to p (exercise). �

Lemma 4.2.11. Let X be a set with an action of the profinite group Γ. The following
conditions are equivalent:

(i) The action map Γ×X → X is continuous, for the discrete topology on X.
(ii) Every element of X is fixed by some open subgroup of Γ.

Proof. (i) ⇒ (ii) : Let x ∈ X. The map Γ → X given by g 7→ g · x factors
as Γ = Γ × {x} ⊂ Γ × X → X (where the last map is the action map), and is thus
continuous by (i). Therefore the preimage of x ∈ X is an open subset of Γ, which by
construction fixes x. This proves (ii).

(ii) ⇒ (i) : For x, y ∈ X, we denote by Ux,y the subset of Γ consisting of those
elements γ such that γx = y. The set Ux,y is either empty, or equal to γUx,x for some (in
fact, any) γ ∈ Ux,y. The subgroup Ux,x ⊂ Γ contains an open subgroup by (ii), hence is
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open by Lemma 4.2.5 (iii). Thus Ux,y is open, being either empty or the image of Ux,x
under a self-homeomorphism of Γ. Now the preimage of any y ∈ X under the action
morphism Γ×X → X is the union of the subsets Ux,y ×{x} where x runs over X, which
are open since X has the discrete topology. This proves (i). �

Definition 4.2.12. When the conditions of Lemma 4.2.11 are fulfilled, we say that
Γ acts continuously on X, or that X is a discrete Γ-set. A discrete Γ-set equipped with a
Γ-equivariant group structure will be called a discrete Γ-group. A discrete Γ-group whose
underlying group is abelian will be called a discrete Γ-module. We define a morphism of
discrete Γ-groups, resp. Γ-modules, as a Γ-equivariant group morphism.

Lemma 4.2.13. Let X be a discrete Γ-set, and F a finite subset of X. Then there
exists an open subgroup of Γ fixing each element of F .

Proof. By assumption, each f ∈ F is fixed by some open subgroup Uf of Γ. Then
the open subgroup

⋂
f∈F Uf of Γ fixes each element of F . �

We conclude this section with a statement that will be needed later. When a group
acts on a set X, we denote by XG the set of elements of X fixed by every element of G.

Lemma 4.2.14. Let X be a discrete Γ-set and n an integer. Then every continuous
map Γn → X factors through a map (Γ/U)n → XU for some open normal subgroup U of
Γ. Conversely, any map Γn → X factoring through (Γ/U)n → X for some open normal
subgroup U of Γ is continuous.

Proof. If Γn → X factors through a map (Γ/U)n → X for some open normal
subgroup U of Γ, it is continuous, since both maps Γn → (Γ/U)n and (Γ/U)n → X are
continuous (for the discrete topology on (Γ/U)n).

Let now f : Γn → X be a continuous map, and Y ⊂ X its image. Since Γn is profinite
set (the limit of the inverse system (Γα)n), it is compact by Proposition 4.1.9. Therefore
Y is compact. Being also discrete, the set Y is finite. Since X is a discrete Γ-set, there is
an open subgroup U ′ in Γ fixing all the elements of Y (Lemma 4.2.13). Shrinking U ′, we
may assume that it is normal in Γ (by Lemma 4.2.5 (i) with u = 1). We have achieved

f(Γn) ⊂ XU ′ .
For each x ∈ X, the preimage f−1{x} is an open subset of Γn. For any g ∈ f−1{x},

we may find open subsets W1, . . . ,Wn of Γ such that g ∈ W1 × · · · × Wn ⊂ f−1{x}.
Write g = (g1, . . . , gn) ∈ Γn with g1, . . . , gn ∈ Γ. By Lemma 4.2.5 (i), for each i ∈
{1, . . . , n} we may find an open normal subgroup Vg,i of Γ such that giVg,i ⊂ Wi. Set
Vg = Vg,1 ∩ · · · ∩ Vg,n. Then g(Vg)

n is an open subset of f−1{x}. Therefore the set
f−1{x} is covered by the open subsets g(Vg)

n for g ∈ f−1{x}. As f−1{x} is compact
(being closed in the compact space Γn), it is covered by the subsets g(Vg)

n, where g runs
over some finite subset Fx of f−1{x}. The subgroup U ′′x =

⋂
g∈Fx Vg is open and normal

in Γ, and so is U ′′ =
⋂
x∈Y U

′′
x (recall that Y is finite). Then the right action of (U ′′)n

on Γn stabilises the subset f−1{x} for each x ∈ X, which means that f factors through
Γn → Γn/(U ′′)n = (Γ/U ′′)n. Setting U = U ′ ∩ U ′′ concludes the proof. �

3. Infinite Galois extensions

In this chapter, we review some aspects of Galois theory, and show that the Galois
group is an example of a profinite group. The only nontrivial fact that we will use without
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proof is the existence of algebraic closures.

When A,B are k-algebras, we will denote by Homk−alg(A,B) the set morphisms of
k-algebras A → B. The group of automorphisms of a k-algebra A will be denoted by
Autk−alg(A).

Lemma 4.3.1. Let L/k and F/k be field extensions.

(i) If L/k is algebraic, and F is algebraically closed, then Homk−alg(L,F ) 6= ∅.
(ii) If L/k is finite, then |Homk−alg(L,F )| ≤ [L : k].

(iii) If L/k is finite separable, and F is algebraically closed, then |Homk−alg(L,F )| =
[L : k].

Proof. (i) : Consider the set of pairs (K,σ) where K/k is a subextension of L/k,
and σ : K → F a k-algebra morphism. It is partially ordered by letting (K,σ) ≤ (K ′, σ′)
when K ⊂ K ′ and σ′|K = σ. It is easy to see that every totally ordered subset admits
an upper bound. By Zorn’s lemma, we find a maximal element (K,σ). Let x ∈ L,
and P ∈ K[X] be the minimal polynomial of x over K. Then P has a root y in the
algebraically closed field F . The subextension E of L/K generated by x is isomorphic
to K[X]/P , and mapping x to y induces a k-algebra morphism E → F extending σ. By
maximality of (K,σ), we must have K = E, hence x ∈ K, and finally L = K.

(ii) and (iii) : We proceed by induction on [L : k]. Let x ∈ L− k, and P ∈ k[X] the
minimal polynomial of x over k. The subextension K of L/k generated by x is isomorphic
to k[X]/P , and morphisms of k-algebras K → F correspond to roots of P in F . There are
at most (resp. exactly, if L/k is separable and F is algebraically closed) degP = [K : k]
such roots. By induction each morphism of k-algebras K → F admits at most (resp.
exactly) [L : K] extensions to a morphism L→ F . There are thus at most (resp. exactly)
[L : K][K : k] = [L : k] morphisms of k-algebras L→ F . �

Recall that when a group G acts on a set X, we denote by XG the set of elements of
X fixed by every element of G.

Proposition 4.3.2. Let L/k be a finite field extension. Let G be a subgroup of
Autk−alg(L) such that LG = k. Then G = Autk−alg(L) and |G| = [L : k].

Proof. We have [L : k] ≥ |Autk−alg(L)| by Lemma 4.3.1 (iii). In particular G
is finite, and it will suffice to prove that |G| ≥ [L : k]. Let M be the set of maps
G→ L, viewed as an k-vector space via pointwise operations. Consider the k-linear map
ϕ : L⊗kL→M sending x⊗y to the map g 7→ xg(y). Assume that the kernel of ϕ contains
a nonzero element v = x1 ⊗ y1 + · · ·+ xr ⊗ yr, where x1, . . . , xr, y1, . . . , yr ∈ L. Choose r
minimal with this property. Then x1, . . . , xr are linearly independent over k. Replacing
v with (1⊗ y−1

1 )v, we may assume that y1 = 1. Since the elements x1, . . . , xr are linearly
independent over k and 0 = ϕ(v)(idL) = x1y1 + · · · + xryr, there exists j ∈ {2, . . . , r}
such that yj does not lie in k. As k = LG, we may find g ∈ G such that g(yj) 6= yj . The
element v′ = x1 ⊗ g(y1) + · · ·+ xr ⊗ g(yr) also lies in the kernel of ϕ, hence so does

v − v′ =

r∑
i=1

xi ⊗ yi −
r∑
i=1

xi ⊗ g(yi) =

r∑
i=2

xi ⊗ (yi − g(yi)).

This element is nonzero, because x2, . . . , xr are linearly independent over k and yj −
g(yj) 6= 0. We have obtained a contradiction with the minimality of r. This proves that
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ϕ is injective, so that

[L : k]2 = dimk L⊗k L ≤ dimkM = |G| · [L : k],

and thus |G| ≥ [L : k], as required. �

Recall that an algebraic extension L/k is called normal if the minimal polynomial
over k of every element of L splits into a product of linear factors over L.

Lemma 4.3.3. Let L/k be a normal field extension and F/k a field extension. Then
all morphisms of k-algebras L→ F have the same image.

Proof. Let P ⊂ k[X] be the set of minimal polynomials over k of elements of L,
and E be the set of roots in F of the elements of P. We prove that E is the common
image. Let σ : L → F be a k-algebra morphism. If x ∈ L, then σ(x) ∈ F is a root of
the minimal polynomial of x over k, proving that σ(L) ⊂ E. Conversely, let y ∈ E, and
pick P ∈ P such that P (y) = 0. As L/k is normal, we may find x1, . . . , xn ∈ L such that
P = (X − x1) · · · (X − xn) in L[X], hence

0 = σ(P (y)) = (σ(P ))(y) = (y − σ(x1)) · · · (y − σ(xn)) ∈ F,
so that y = σ(xi) for some i ∈ {1, . . . , n}. Thus E ⊂ σ(L). �

Proposition 4.3.4. Let F/k be an algebraic field extension. The following are equiv-
alent:

(i) The extension F/k is separable and normal,
(ii) FAutk−alg(F ) = k.

Proof. (i) ⇒ (ii) : Let x ∈ F − k, and P the minimal polynomial of x over k. The
polynomial P splits into a product of linear factors over F (as F/k is normal), and has
no multiple root (as F/k separable). Since P has degree at least two, we find y ∈ F such
that y 6= x and P (y) = 0. Let K be the subfield of F generated by x over k, and F be
an algebraic closure of F . The morphism of k-algebras k[X]/P → K given by X 7→ x is
an isomorphism, hence we can define a morphism of k-algebras K → F by x 7→ y. That
morphism extends to a morphism F → F by Lemma 4.3.1 (i), whose image equals F by
Lemma 4.3.3. We have thus found σ ∈ Autk−alg(F ) such that σ(x) = y 6= x, proving (ii).

(ii) ⇒ (i) : Let x ∈ F . Let S be the set of those σ(x) ∈ F , where σ runs over
Autk−alg(F ). The elements of S are among the roots of the minimal polynomial of x over
k, and in particular S is finite. Consider the polynomial

P =
∏
s∈S

(X − s) ∈ F [X].

Every σ ∈ Autk−alg(F ) permutes the elements of S, so that

σ(P ) =
∏
s∈S

(X − σ(s)) =
∏
s∈S

(X − s) = P.

Thus P = (F [X])Autk−alg(F ) = (FAutk−alg(F ))[X] = k[X]. The minimal polynomial of x
over k divides P , hence also splits into a product of pairwise distinct monic linear factors
over F . �

Definition 4.3.5. An algebraic field extension F/k is called Galois if it satisfies
the conditions of Proposition 4.3.4. Its Galois group Gal(F/k) is defined as the group
Autk−alg(F ).
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Lemma 4.3.6. If F/k is a Galois extension and E a subextension of F/k, then the
extension F/E is Galois.

Proof. Let x ∈ F , and P ∈ k[X], resp. Q ∈ E[X], be the minimal polynomial of x
over k, resp. E. Then Q divides P in F [X], hence also splits into a product of pairwise
distinct monic linear factors over F . �

Lemma 4.3.7. Let F/k be a Galois extension, and E/k a Galois subextension of F/k.
Then every element of Gal(F/k) restricts to an element of Gal(E/k), and the induced
morphism Gal(F/k)→ Gal(E/k) is surjective.

Proof. Let σ ∈ Gal(F/k). Then σ(E) = E by Lemma 4.3.3, proving the first
statement. Let now τ ∈ Gal(E/k). Let F be an algebraic closure of F . Then the

morphism E
τ−→ E ⊂ F extends to a morphism of k-algebras F → F by Lemma 4.3.1 (i),

whose image equals F by Lemma 4.3.3. We have thus extended τ to an element of
Gal(F/k). �

Lemma 4.3.8. Let F/k be a Galois extension. Then every finite subset of F is con-
tained in a finite Galois subextension of F/k.

Proof. For any x ∈ F , the elements σ(x) ∈ F for σ ∈ Gal(F/k) are roots of
the minimal polynomial of x over k, hence are in finite number. Thus, if S is a finite
subset of F , the subextension L/k of F/k generated by the elements σ(x), for x ∈ S and
σ ∈ Gal(F/k), is finite. Since the extension F/k is Galois, for every y ∈ L − k we may
find σ ∈ Gal(F/k) such that σ(y) 6= y (Proposition 4.3.4). But σ(L) = L by construction
of L, hence σ restricts to an element of Autk−alg(L). This proves that the extension L/k
is Galois (Proposition 4.3.4). �

Proposition 4.3.9. Let F/k be a Galois extension. The groups Gal(L/k), where L/k
runs over the finite Galois subextensions of F/k (ordered by inclusion) form an inverse
system of groups, whose inverse limit is isomorphic to Gal(F/k).

Proof. Let F be the set of finite Galois subextensions of F/k. If L,L′ ∈ F , then
we may find L′′ ∈ F such that L ⊂ L′′ and L′ ⊂ L′′ by Lemma 4.3.8. The morphisms
Gal(L′/k)→ Gal(L/k) for L,L′ ∈ F with L ⊂ L′ are given by restricting automorphisms
(see Lemma 4.3.7).

By Lemma 4.3.8 the field F is the union of the fields L ∈ F . Therefore an automor-
phism of F is the identity if and only if it restricts to the identity on each L ∈ F . This
implies the injectivity of the natural morphism (see Lemma 4.3.7)

Gal(F/k)→ lim
←−

Gal(L/k) ⊂
∏
L∈F

Gal(L/k).

Let now σL ∈ Gal(L/k) be a family of elements representing an element of lim
←−

Gal(L/k).

Let x ∈ F . By Lemma 4.3.8, there exists L ∈ F such that x ∈ L. Moreover, if another
extension L′ ∈ F contains x, then there exists an extension L′′ ∈ F containing L and L′,
so that σL(x) = σL

′′
(x) = σL

′
(x). Therefore σL(x) ∈ F does not depend on the choice

of the extension L ∈ F containing x. We have thus defined a map σ : F → F restricting
to σL for each finite Galois subextension L/k of F/k. It is easy to verify that σ is indeed
an automorphism of the k-algebra F . �
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Definition 4.3.10. Let F/k be a Galois extension. By Proposition 4.3.9 the group
Gal(F/k) is profinite. The corresponding topology is called the Krull topology.

Theorem 4.3.11 (Krull). The associations

E 7→ Gal(F/E) ; H 7→ FH

yield inclusion-reversing, mutually inverse bijections between subextensions E of F/k and
closed subgroups H of Gal(F/k). If E is a subextension of F/k, then

(i) the subgroup Gal(F/E) is open if and only if E/k is finite, in which case

[Gal(F/k) : Gal(F/E)] = [E : k].

(ii) the subgroup Gal(F/E) is normal if and only if E/k is Galois, in which case

Gal(F/k)/Gal(F/E) ' Gal(E/k).

Proof. Let E be a subextension of F/k. By Lemma 4.3.6 we have FGal(F/E) = E.
If E/k is finite, it is contained in a finite Galois subextension E′ of F/k by Lemma 4.3.8.
The subgroup Gal(F/E) is then open in Gal(F/k), hence also closed, because it is the
preimage of Gal(E′/E) under the projection Gal(F/k)→ Gal(E′/k) (by definition of the
topology). When the subextension E is arbitrary (not necessarily finite), it is the union
of its finite subextensions, so that Gal(F/E) is an intersection of closed subgroups in
Gal(F/k), hence is closed.

Conversely, let H ⊂ Gal(F/k) be a closed subgroup. Let E = FH . Then H ⊂
Gal(F/E). Assume σ ∈ Gal(F/E) does not belong to H. By Lemma 4.2.5 (i), the
open complement of H in Gal(F/k) contains a subset of the σGal(F/L), where L is
a finite Galois subextension of F/k. Let H ′ be the image of H under the morphism

Gal(F/k) → Gal(L/k), and set E′ = LH
′

= E ∩ L. The extension L/E′ is Galois
and H ′ = Gal(L/E′) by Proposition 4.3.2. In particular we may find h ∈ H such that
h|L = σ|L ∈ Gal(L/E′). But then h ∈ H ∩ σGal(F/L), contradicting the choice of L.
We have proved that H = Gal(F/E).

Now assume that H is an open subgroup of Gal(F/k). By Lemma 4.2.5 (i), there
exists a finite Galois subextension L of F/k such that Gal(F/L) ⊂ H. Then FH is
contained in FGal(F/L) = L, hence is finite.

Let now E/k be a subextension of F/k, and consider the set X = Homk−alg(E,F ).

Let F be an algebraic closure of F , and Y = Homk−alg(E,F ). By Lemma 4.3.1 (i),

every element g ∈ Y may be extended to a morphism of k-algebras h : F → F . The
image of h coincides with F ⊂ F by Lemma 4.3.3, hence h is induced by an element

σ ∈ Gal(F/k) such that g is the composite E ⊂ F
σ−→ F ⊂ F . This implies that the

map X → Y induced by the inclusion F ⊂ F is bijective, and that the natural action
of Gal(F/k) on X is transitive. Since the stabilisator of the inclusion E ⊂ F (viewed
as an element of X) is Gal(F/E), we deduce that X is in bijection with the quotient
Gal(F/k)/Gal(F/E). Now |Y | = [E : k] by Lemma 4.3.1 (iii), and we conclude that
[Gal(F/k) : Gal(F/E)] = [E : k].

If E/k is a Galois subextension of F/k, the subgroup Gal(F/E) is normal, being the
kernel of the morphism Gal(F/k) → Gal(E/k). Conversely let H be a normal subgroup
of Gal(F/k), and E = FH . Let x ∈ E. Then for any σ ∈ Gal(F/k) and h ∈ H, the
automorphism σ−1 ◦ h ◦ σ ∈ Gal(F/k) belongs to H, hence fixes x. Therefore

h ◦ σ(x) = σ ◦ σ−1 ◦ h ◦ σ(x) = σ(x),
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proving that σ(x) ∈ E. Thus the subfield E ⊂ F is stable under the action of Gal(F/k),
so that EAutk−alg(E) ⊂ FGal(F/k) = k. It follows that the extension E/k is Galois (Propo-
sition 4.3.4). The isomorphism Gal(F/k)/Gal(F/E) ' Gal(E/k) is a consequence of
Lemma 4.3.7. �

In the sequel, the most important example of an infinite Galois extension will be the
separable closure, which we discuss now. Recall that a field is called separably closed if it
admits no nontrivial separable extension. An extension F/k is called a separable closure
if it is separable and if F is separably closed. Such an extension always exists: we may
take for F the set of separable elements in a given algebraic closure of k.

Lemma 4.3.12. Let L/k and F/k be field extensions.

(i) Assume that L is separable over k and that F is separably closed. Then there exists
a morphism of k-algebras L→ F .

(ii) Assume that L is separably closed and that F is separable over k. Then any mor-
phism of k-algebras L→ F is an isomorphism.

Proof. (i) : Let F be an algebraic closure of F . By Lemma 4.3.1, we find a morphism
of k-algebras σ : L → F . Let x ∈ L. Then x is a root of an irreducible separable
polynomial in k[X], and σ(x) ∈ F is a root of same polynomial. In particular σ(x) is
separable over k, hence belongs to F . Therefore σ(L) ⊂ F , proving (i).

(ii) : Since every element of F is separable over k, any morphism of k-algebras L→ F
is a separable extension, hence an isomorphism since L is separably closed. �

Proposition 4.3.13. Every separable closure of k is a Galois extension.

Proof. Let F be a separable closure of k, and x ∈ F − k. The minimal polynomial
P ∈ k[X] of x over k is separable of degree at least two. Its image in F [X] thus possesses
an irreducible factor Q such that Q(x) 6= 0. The field F [X]/Q is a separable extension
of F , hence equals F . It follows that Q = X − y for some y ∈ F distinct from x. Let
K be the subextension of F/k generated by x. Then X 7→ x induces an isomorphism
of k-algebras k[X]/P ' K, and we may thus define a morphism of k-algebras K → F
mapping x to y. As F is separable over K, this morphism extends to a morphism of k-
algebras σ : F → F by Lemma 4.3.12 (i), which is an isomorphism by Lemma 4.3.12 (ii).
We have thus constructed σ ∈ Autk−alg(F ) such that σ(x) 6= x, proving that F is Galois
(Proposition 4.3.4). �

Remark 4.3.14. By Lemma 4.3.12, a separable closure of k is unique up to an
isomorphism of k-algebras. But by Proposition 4.3.13 and Proposition 4.3.4, such an
isomorphism is nonunique, unless k is separably closed. For this reason, we will usually
fix a separable closure ks of k.

Example 4.3.15. Let k be a finite field, and ks a separable closure of k. Then k
has positive characteristic p, and its cardinality q is a power of p. For each n ∈ N− {0},
there is a unique subextension Fn of ks/k having degree n, namely the set of roots of
the polynomial Xqn −X ∈ k[X]. This polynomial splits into distinct linear factors over
Fn, hence Fn/k is Galois. The group Gal(Fn/k) is cyclic of order n, generated by the
automorphism x 7→ xq. We deduce that (see Example 4.2.4)

Gal(ks/k) = Ẑ.

Finally, the existence of pro-p-Sylow subgroups has the following consequence:
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Lemma 4.3.16. Let p be a prime number. Then there exists a separable extension
E/k having the following properties:

(i) The degree of every finite separable extension of E is a power of p.
(ii) The degree of every finite subextension of E/k is prime to p.

Proof. Let ks be a separable closure of k, and P a pro-p-Sylow subgroup of Gal(ks/k).
We set E = (ks)

P .
(i): Let D/E be a finite separable extension. By Lemma 4.3.12 (i) we may assume

that D ⊂ ks. By Theorem 4.3.11, the integer [D : E] coincides with the index of the open
subgroup Gal(ks/D) in the pro-p-group P = Gal(ks/E), hence is a power of p.

(ii): Let L/k be a finite subextension of E/k. Then we may find a Galois subextension
F/k of ks/k containing L. Let Q be the image of P under the morphism Gal(ks/k) →
Gal(F/k), and set K = FQ. Since by Proposition 4.3.2 we have |Gal(F/k)| = [F :
k] = [F : K] · [K : k] and |Q| = |Gal(F/K)| = [F : K], it follows that [K : k] is
the index of Q in Gal(F/k), hence is prime to p (as P is pro-p-Sylow subgroup). Now
K = (ks)

P ∩ F = E ∩ F contains L, hence [L : k] is also prime to p. �

4. Galois descent

Let us fix a Galois extension F/k and denote by Γ the profinite group Gal(F/k).
When γ ∈ Γ and λ ∈ F , we will write γλ instead of γ(λ). In this section, we characterise
those F -vector spaces V equipped with a Γ-action, which are of the form V0 ⊗k F for
some k-vector space V0, and describe how to recover V0 from V .

Let us first formalise an argument that will be used repeatedly.

Lemma 4.4.1. Let U,W be k-vector spaces. Assume that a group G acts by k-linear
automorphisms on U . Then the induced G-action on W ⊗k U satisfies (W ⊗k U)G =
W ⊗k (UG).

Proof. Clearly W ⊗k (UG) ⊂ (W ⊗k U)G. Let now ei for i ∈ I be a k-basis of W .
For each i ∈ I, let e∗i : W → k be the linear map sending an element of W to its i-th
coordinate in the above basis, and consider the k-linear map

εi : W ⊗k U
e∗i⊗idU−−−−−→ k ⊗k U = U.

Then for any x ∈W ⊗k U , we claim that

(4.4.a) x =
∑
i∈I

ei ⊗ εi(x).

Indeed this is easily verified when x = w ⊗ u for w ∈ W,u ∈ U , and the general case
follows since both sides of the formula are k-linear. Since each map εi is G-equivariant,
it maps (W ⊗k U)G into UG, and the statement follows from (4.4.a). �

Definition 4.4.2. Let V be an F -vector space. A Γ-action on V is called semilinear
if for all v ∈ V and λ ∈ F and γ ∈ Γ, we have in V

γ(λv) = (γλ)(γv).

Let V, V ′ be F -vector equipped with a semilinear Γ-action. Then V ⊕V ′ and V ⊗F V ′
inherit a semilinear Γ-action. So does HomF (V, V ′), by setting, for f ∈ HomF (V, V ′) and
γ ∈ Γ

(4.4.b) (γf)(u) = γ(f(γ−1u)) for u ∈ U.
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Lemma 4.4.3. Let W be a k-vector space. Then the Γ-action on WF = W ⊗k F via
the second factor is semilinear and continuous. The subset (WF )Γ of WF coincides with
W = W ⊗k k.

Proof. The semilinearity is clear, and the last statement follows from Lemma 4.4.1,
since FΓ = k. It only remains to prove the continuity. An arbitrary element w ∈ WF

is of the form w1 ⊗ λ1 + · · · + wn ⊗ λn, where w1, . . . , wn ∈ W and λ1, . . . , λn ∈ F . By
Lemma 4.3.8, the elements λ1, . . . , λn are contained in some finite Galois subextension L
of F/k. Then the subgroup Gal(F/L) ⊂ Γ is open (Theorem 4.3.11) and fixes w, proving
the continuity (see Lemma 4.2.11). �

Lemma 4.4.4 (Dedekind). Let A be a k-algebra and K/k a field extension. Let
σ1, . . . , σn be pairwise distinct morphisms of k-algebras A→ K. Then the elements

σ1, . . . , σn ∈ Homk−alg(A,K) ⊂ Homk(A,K) = HomK(AK ,K)

are linearly independent over K. In particular n ≤ dimk A.

Proof. Assume that

(4.4.c) a1σ1 + · · ·+ amσm = 0.

where a1, . . . , am ∈ K are not all zero. Pick such a relation, where m ∈ {1, . . . , n} is
minimal. In particular am 6= 0, and m > 1. As σm 6= 0, there exists i ∈ {1, . . . ,m − 1}
such that ai 6= 0. Since σi 6= σm, we may find z ∈ A such that σi(z) 6= σm(z). Since the
maps σ1, . . . , σm are multiplicative, it follows from (4.4.c) that

(4.4.d) a1σ1(z)σ1 + · · ·+ amσm(z)σm = 0.

Subtracting σm(z) times Equation (4.4.c) to (4.4.d) yields

a1(σ1(z)− σm(z))σ1 + · · ·+ am−1(σm−1(z)− σm(z))σm−1 = 0.

Since ai(σi(z)− σm(z)) 6= 0, we have found a contradiction with the minimality of m.
The last statement follows from the fact that dimK Homk(A,K) = dimK AK =

dimk A. �

Proposition 4.4.5 (Galois descent). Let V be an F -vector space. If Γ acts contin-
uously on V by semilinear automorphisms, then the natural morphism V Γ ⊗k F → V is
bijective.

Proof. Denote by ϕ the morphism V Γ ⊗k F → V . The proof of the injectivity of ϕ
is a recast of the proof of Proposition 4.3.2. Namely, assume that the kernel of ϕ contains
a nonzero element v = v1⊗λ1 + · · ·+vr⊗λr with vi ∈ V Γ and λi ∈ F for all i = 1, . . . , r.
Choose r minimal with this property. Then v1, . . . , vr are linearly independent over k.
Replacing v with λ−1

1 v, we may assume that λ1 = 1. Since the elements v1, . . . , vr are
linearly independent over k and 0 = ϕ(v) = λ1v1 + · · ·+ λrvr, there exists j ∈ {2, . . . , r}
such that λj does not lie in k. Since k = FΓ, we may find γ ∈ Γ such that γλj 6= λj . By
semilinearity of the Γ-action on V , the morphism ϕ is Γ-equivariant, hence γv lies in the
kernel of ϕ. Thus

v − γv =

r∑
i=1

vi ⊗ λi −
r∑
i=1

vi ⊗ γλi =

r∑
i=2

vi ⊗ (λi − γλi)
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is in the kernel of ϕ. This element is nonzero, because v2, . . . , vr are linearly independent
over k and λj − γλj 6= 0. We have obtained a contradiction with the minimality of r.
This proves that ϕ is injective.

Conversely let v ∈ V . By continuity of the Γ-action on V , we may find a finite Galois
subextension L of F/k such that v is fixed by Gal(F/L) (see Lemma 4.2.11 and Theo-
rem 4.3.11). Let e1, . . . , en be a basis of the k-vector space L. The group Gal(L/k) has car-
dinality n (Proposition 4.3.2), and by Lemma 4.3.7 we may find preimages γ1, . . . , γn ⊂ Γ
of the elements of Gal(L/k). Consider the elements

(4.4.e) wj =

n∑
i=1

(γiej)(γiv) ∈ V for j = 1, . . . , n.

Let γ ∈ Γ. Since Γ is the disjoint union of the subsets γ1 Gal(F/L), . . . , γn Gal(F/L), for
each i ∈ {1, . . . , n} there is a unique p ∈ {1, . . . , n} such that γ−1

p γγi ∈ Γ belongs to the
subgroup Gal(F/L). Therefore, for every j ∈ {1, . . . , n}, we have

γwj =

n∑
i=1

(γγiej)(γγiv) =

n∑
p=1

(γpej)(γpv) = wj ,

proving that wj ∈ V Γ. The matrix (γiej)i,j ∈ Mn(L) is invertible by Dedekind’s
Lemma 4.4.4. Let mi,j ∈ L be the coefficients of its inverse. By (4.4.e), we have

γiv =

n∑
j=1

mi,jwj for i = 1, . . . , n.

These elements lie in the image of ϕ (as each wj belongs to V Γ). There is i ∈ {1, . . . , n}
such that γi is the preimage of 1 ∈ Gal(L/k), hence belongs to Gal(F/L) and thus fixes
v. Then v = γiv belongs to the image of ϕ. �

Remark 4.4.6. Let A be an F -algebra. Assume that Γ acts continuously by semi-
linear automorphisms on the F -vector space A, and that the multiplication map of A is
compatible with the Γ-action, in the sense that

(γa)(γb) = γ(ab) for all a, b ∈ A.
Then AΓ is a k-algebra, and the morphism AΓ⊗kF → A is an isomorphism of k-algebras.
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Exercises

Exercise 4.1. Let p be a prime number and Γ a pro-p-group. The purpose of this
exercise is to prove that the index of every subgroup of Γ is a power of p, if it is finite.

Let n ∈ N, and write n = prm, where m is prime to p and r ∈ N.

(i) Consider the subset Cn = {gn|g ∈ Γ}. Show that Cn is closed in Γ.

Let now g ∈ Γ. Let U be an open normal subgroup of Γ.

(ii) Show that gp
s ∈ U for some s ≥ r.

(iii) Show that gp
r ∈ CnU . (Hint: Write pr = aps + bn, with a, b ∈ Z.)

(iv) Deduce that gp
r ∈ Cn.

(v) Let H ⊂ Γ be a normal subgroup of index n. Show that Cn ⊂ H, and deduce that
Γ/H is a finite p-group.

(vi) Conclude.

Exercise 4.2. Let F/k be a Galois field extension. Let H ⊂ Gal(F/k) be a subgroup,

and H its closure. Show that H is a subgroup, and that FH = FH .

Exercise 4.3. Recall that a topological space is called Hausdorff if any two distinct
points are contained in disjoint opens subsets.

(i) Let Γ be a profinite group. We have seen that Γ is compact. Show that Γ is
Hausdorff and that every open subset of Γ containing 1 contains an open normal
subgroup.

Let now G be a compact and Hausdorff topological group. We assume that every open
subset of G containing 1 contains an open normal subgroup. We are going to show that
G is profinite. Let U be the set of open normal subgroups of G, ordered by setting U ≤ V
when V ⊂ U .

(ii) Show that the groups G/U for U ∈ U form an inverse system, that the group
H = lim

←−
G/U is profinite and that the natural morphism f : G→ H is continuous.

(iii) Show that f is injective.
(iv) Show that the image of f is dense (i.e. meets every nonempty open subset of H).
(v) Show that f is closed (i.e. f(Z) is closed in H whenever Z is closed in G).

(vi) Conclude that f : G→ H is a homeomorphism.
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CHAPTER 5

Étale and Galois algebras

Étale algebras are generalisations of finite separable field extensions, and share many
of their properties. The category of étale algebras has the advantage of begin stable under
extension of scalars, a feature providing a very useful flexibility lacking if one works only
with separable extensions. In this chapter, we show that an étale algebra is the same
thing as a finite set with a continuous action of the absolute Galois group. Shifting the
point of view in this fashion will be central in the next chapter.

In the same spirit, Galois G-algebras, introduced at the end of this chapter, generalise
finite Galois field extensions while being stable under extension of scalars. These algebras
will provide a guiding example, as they constitute a simple type of torsors, objects which
will figure prominently in the next chapter.

This chapter begins with a brief introduction to the language of categories, which
provides a suitable framework to express the above mentioned results.

By contrast with the previous ones, this chapter only deals with commutative alge-
bras, and as such has a slightly different flavour. Its purpose is nonetheless to provide
motivation to develop a more general theory of torsors, that will then be applied to the
noncommutative case.

1. Categories

In this section, we briefly introduce a language that will permit a convenient formula-
tion of certain results. We will not make a very extensive use of it, and so limit ourselves
to very basic considerations leading to the notion of equivalence of categories.

Definition 5.1.1. A category C consists of the following data:

(i) a class of objects,
(ii) for each ordered pair of objects A,B a set of morphisms HomC(A,B),
(iii) a specified element idA ∈ HomC(A,A) for every A ∈ Ob(C),
(iv) a map (called composition law) HomC(A,B)×HomC(B,C)→ HomC(A,C) denoted

by (f, g) 7→ g ◦ f , for every objects A,B,C.

We write f : A → B to indicate that f ∈ HomC(A,B). These data are subject to the
following axioms

(a) idB ◦f = f = f ◦ idA for every f : A→ B,
(b) h ◦ (g ◦ f) = (h ◦ g) ◦ f for every f : A→ B, g : B → C, h : C → D.

A morphism f : A→ B in C is called an isomorphism if there exists g : B → A such that
g ◦ f = idA and f ◦ g = idB .

Remark 5.1.2. We will often write X ∈ C to mean that X is an object of C.
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Remark 5.1.3. The meaning of the word “class” in the above definition is left to
the imagination of the reader. Observe that the objects do not necessarily form a set, for
instance in the category Sets defined just below.

Example 5.1.4. The category Sets is defined by letting its objects be the sets, its
morphisms the maps of sets, the composition law is given by composition of maps. Simi-
larly, one defines the category of groups (denoted by Groups), of abelian groups (denoted
by Ab), of rings, of k-algebras,. . .

When B, C are categories, a functor F : B → C is the data of an object F(B) ∈ C
for every object B ∈ B, and a morphism F(f) : F(B)→ F(B′) in C for every morphism
f : B → B′ in B, subject to the following conditions:

(a) F(idB) = idF(B) for every B ∈ B,
(b) F(g) ◦ F(f) = F(g ◦ f) for every f : B → B′ and g : B′ → B′′ in B.

When B = C, setting F(B) = B and F(f) = f for all B and f as above defines a
functor idB : B → B.

If F ,G : B → C are functors, a morphism of functors (or natural transformation)
ϕ : F → G is the data of a morphism ϕB : F(B)→ G(B) in C for every B ∈ B such that
for every morphism f : B → B′ in B, the following diagram commutes

F(B)
ϕB //

F(f)

��

G(B)

G(f)

��
F(B′)

ϕB′ // G(B′)

When F = G, setting ϕB = idF(B) for all B ∈ B defines a morphism of functors
idF : F → F . Morphisms of functors can be composed in an obvious way. A morphism of
functors ϕ : F → G is called an isomorphism if there is a morphism of functors ψ : G → F
such that ψ ◦ ϕ = idF and ϕ ◦ ψ = idG . Observe that ϕ is an isomorphism if and only if
each ϕB for B ∈ B is an isomorphism in C.

An equivalence of categories B ' C is the data of a pair of functors F : B → C and
G : C → B together with a pair of isomorphisms of functors idB → G ◦F and idC → F ◦G.

Given a category C, the opposite category Cop is defined as follows. The objects of
Cop are the objects of C, and HomCop(A,B) = HomC(B,A) for every A,B ∈ C. If A ∈ C
the morphism idA ∈ HomCop(A,A) corresponds to the morphism idA ∈ HomC(A,A).
Composition of morphisms is defined by the map

HomCop(A,B)×HomCop(B,C) = HomC(B,A)×HomC(C,B)→ HomC(C,A) = HomCop(A,C)

where the middle map is the composition map in C.
A contravariant functor B → C is a functor Bop → C. We define in an obvious way the

notions of morphism of contravariant functors, contravariant equivalence of categories,. . .

2. Étale algebras

Let us fix a separable closure ks of k. Let A be a k-algebra. We define

X(A) = Homk−alg(A, ks) = Homks−alg(Aks , ks).
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Remark 5.2.1. By Remark 4.3.14, the set X(A) does not depend, up to bijection, on
the choice of the separable closure ks of k. In particular its cardinality |X(A)| ∈ N∪{∞}
does not depend on any choice.

Lemma 5.2.2. We have |X(A)| ≤ dimk A.

Proof. This follows from Dedekind’s Lemma 4.4.4. �

Definition 5.2.3. A commutative k-algebra A is called étale if it is finite-dimensional
and |X(A)| = dimk A. Decreeing that a morphism of étale k-algebras is a morphism of
k-algebras between étale algebras, we define the category of étale k-algebras, which we
denote by Etk.

Lemma 5.2.4. Let K/k be a field extension. Then the k-algebra K is étale if and only
if the extension K/k is finite and separable.

Proof. Since K is a field, we have dimkK ≥ 1. Thus if K is étale, then X(K) 6= ∅,
hence K can be embedded in ks over k, which implies that K/k is separable. Conversely,
assume that K/k is finite and separable. Let F be an algebraic closure of ks. There are
[K : k] distinct morphisms of k-algebras K → F by Lemma 4.3.1 (iii). Let f : K → F be
a morphism of k-algebras. Let x ∈ K, and let P ∈ k[X] be the minimal polynomial of x
over k. Then P is separable, and f(x) ∈ F is a root of P . Therefore f(x) is separable
over k, hence belongs to ks. We have thus produced [K : k] = dimkK distinct elements
of X(K). �

Lemma 5.2.5. Let L/k be a field extension and A an étale k-algebra. Then the L-
algebra AL is étale.

Proof. Let Ls be a separable closure of L. By Lemma 4.3.12 (i) there exists a
morphism of k-algebras σ : ks → Ls. Denote by µ : ks ⊗k L → Ls the morphism of k-
algebras given by x ⊗ y 7→ σ(x)y for x ∈ ks and y ∈ L. Every morphism of k-algebras
f : A→ ks induces a morphism of L-algebras

f̃ : AL
fL−→ (ks)L = ks ⊗k L

µ−→ Ls,

which fits into the commutative diagram

AL
f̃ // Ls

A
f //

a7→a⊗1

OO

ks

σ

OO

Since σ is injective (as ks is a field), we see that if f, g ∈ X(A) are such that f̃ = g̃, then
f = g. Therefore |X(AL)| ≥ |X(A)| = dimk A = dimLAL. �

Proposition 5.2.6. Assume that k = ks, and let A be an étale k-algebra. Let M
be the set of maps X(A)→ k, with its k-algebra structure given by pointwise operations.
Then the morphism of k-algebras A → M sending a ∈ A to the map f 7→ f(a) is an
isomorphism.

Proof. Let n = dimk A. By Dedekind’s Lemma 4.4.4, the n elements of X(A) are
linearly independent over k, hence generate the n-dimensional k-vector space Homk(A, k).
In particular the intersection of their kernels is zero. Thus the morphism of the statement
is injective, hence bijective by dimensional reasons. �
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Corollary 5.2.7. If k is separably closed, then every étale k-algebra is isomorphic
to kn for some integer n.

Recall that an element r of a ring R is called nilpotent if rn = 0 for some integer n,
and that the ring R is called reduced if it contains no nonzero nilpotent element.

Remark 5.2.8. Let R,S be rings. Then R× S is reduced if and only if R and S are
reduced. Indeed a pair of nonzero nilpotent elements of R and S give rise to a nonzero
nilpotent element of R× S. Conversely, if r ∈ R (resp. s ∈ S) is nonzero nilpotent, then
(r, 0) ∈ R× S (resp. (0, s) ∈ R× S) is so.

Lemma 5.2.9. An étale k-algebra is reduced.

Proof. Let A be a finite-dimensional k-algebra. If x is a nilpotent element of A,
every morphism of k-algebras A→ ks maps x to zero, hence factors uniquely through the
quotient morphism A → A/xA. In other words, the natural map X(A/xA) → X(A) is
bijective. If x 6= 0, then

|X(A)| = |X(A/xA)| ≤ dimk(A/xA) < dimk A,

and A is not étale. �

Lemma 5.2.10. Let A,B be finite-dimensional k-algebras.

(i) We have X(A×B) = X(A) tX(B).
(ii) The k-algebra A×B is étale if and only if the k-algebras A and B are étale.

Proof. (i) : The surjective morphisms of k-algebras A × B → A and A × B → B
allow us to view X(A) and X(B) as subsets of X(A×B). Let f ∈ X(A×B). The image
of f is a field by Lemma 3.1.2, hence the kernel of f is a maximal ideal m of A×B. There
exist ideals I ⊂ A and J ⊂ B such that m = I × J (every ideal of A×B is of this form),
and the maximality of m implies that I = A or J = B, and that I 6= A or J 6= B. This
proves that f belongs to exactly one of the subsets X(A) and X(B).

(ii) : Since dimk(A×B) = dimk A+dimk B, this follows from (i) and Lemma 5.2.2. �

Proposition 5.2.11. Every commutative reduced finite-dimensional k-algebra is a
product of field extensions of k.

Proof. Let A be such an algebra. Let I be the intersection of maximal ideals of
A. Since A is artinian, we can find1 a finite set of maximal ideals M of A such that
I =

⋂
m∈M m. Consider the natural morphism of k-algebras

ψ : A→
∏

m∈M
A/m.

If m,m′ are distinct elements of M , we have 1 ∈ m+m′. This yields an element em,m′ ∈ m′

such that em,m′ = 1 mod m. The element

em =
∏

m′∈M−{m}

em,m′ ∈ A

has image 1 in A/m, and 0 in A/m′ for m ∈ M − {m}. It follows that the A-module∏
m∈M A/m is generated by the elements ψ(em) for m ∈ M . Since the morphism ψ is

A-linear, we conclude that ψ is surjective.

1the set of maximal ideals of A is actually finite, but we will not need this fact.
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Let now x ∈ I. Then, as A is artinian, we can find n ∈ N such that the elements xn

and xn+1 generate the same ideal of A. This yields a ∈ A such that xn = axn+1, and thus
xn(1− ax) = 0. If 1− ax ∈ m for some maximal ideal m of A, then 1 ∈ m+ I = m, hence
m = A, a contradiction. Thus 1 − ax belongs to no maximal ideal of A, in other words
1− ax ∈ A×. We deduce that xn = 0, hence x = 0 since A is reduced. As I = kerψ, this
proves the injectivity of ψ. �

Corollary 5.2.12. Every étale k-algebra is a finite product of field extensions of k.

Proof. This follows from Lemma 5.2.9 and Proposition 5.2.11. �

We are now in position to formulate the main result of this section, we provides
various characterisations of étale algebras.

Proposition 5.2.13. Let A be a finite-dimensional commutative k-algebra, and n =
dimk A. Then the following conditions are equivalent:

(i) The k-algebra A is étale.
(ii) The ks-algebra Aks is isomorphic to (ks)

n.
(iii) The k-algebra A is isomorphic to a product of separable field extensions of k.
(iv) If k is an algebraic closure of k, then the ring Ak is reduced.
(v) If L/k is a field extension, then the ring AL is reduced.

Proof. (i) ⇒ (ii) : This follows from Lemma 5.2.5 and Corollary 5.2.7.
(ii) ⇒ (i) : The projections (ks)

n → ks yield n distinct elements of X(A).
(iii) ⇒ (i) : This follows from Lemma 5.2.10 (ii) and Lemma 5.2.4.
(i) ⇒ (v) : This follows from Lemma 5.2.5 and Lemma 5.2.9.
(v) ⇒ (iv) : Clear.
(iv) ⇒ (iii) : The k-algebra A is a finite product of field extensions by Proposi-

tion 5.2.11. Let K/k be one of these field extensions, and x ∈ K. Let B be the
k-subalgebra of K generated by x. Then B is isomorphic to k[X]/P , where P is the
minimal polynomial of x over k. The ring k[X]/P ' Bk is reduced, being contained
in Kk, which is reduced because Ak is so (in view of Remark 5.2.8). This implies that

P ∈ k[X] is separable : indeed if P = (X − a)Q ∈ k[X] where Q ∈ k[X] and a ∈ k
are such that Q(a) = 0, then P | Q2, hence Q defines a nonzero nilpotent element of
k[X]/P . �

The characterisations of Proposition 5.2.13 can be used to provide a simple proof of
the fact that the property of being étale “descends” under extension of the base field.

Corollary 5.2.14. Let L/k be a field extension and A a k-algebra. If the L-algebra
AL is étale, then so is the k-algebra A.

Proof. Let k be an algebraic closure of k, and L an algebraic closure of L. By
Lemma 4.3.12 (i), we may view k as a subfield of L. The ring AL is reduced by assumption
(and the criterion (v) in Proposition 5.2.13), hence so is its subring Ak. This proves that
A is étale by the criterion (iv) in Proposition 5.2.13. �

3. Characteristic polynomials in étale algebras

In this section, we provide explicit formulas computing the norm and trace of elements
of étale algebras. As an application, we deduce transitivity properties of the norm and
trace maps. We will consider more generally characteristic polynomials of elements of
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étale algebras, of which the norm and trace are specific coefficients. This permits to
prove statements for the norm and trace simultaneously, as well as generalise them to the
other coefficients of the characteristic polynomial.

Definition 5.3.1. Let A be a finite-dimensional k-algebra, and n = dimk A. The
characteristic polynomial of an element a ∈ A is the polynomial

CpA/k(a) = det(X idA−la) ∈ k[X],

where la : A → A is the map given by x 7→ ax (viewed as a k-linear map). Writing this
polynomial as anX

n+ · · ·+a0 where a0, . . . , an ∈ k, we define the norm and trace of a as

NA/k(a) = (−1)na0 and TrA/k(a) = −an−1.

Observe that if K/k is a field extension, then for any a ∈ A

CpAK/K(a⊗ 1) = CpA/k(a) ∈ k ⊂ K.

For any a ∈ A, we have NA/k(a) = det(la). The properties of the determinant imply
that, for any a, b ∈ A

(5.3.a) NA/k(ab) = NA/k(a) NA/k(b) ; NA/k(1) = 1.

Lemma 5.3.2. Let A be a finite-dimensional k-algebra, and a ∈ A. Then a ∈ A× if
and only if NA/k(a) 6= 0.

Proof. It follows from (5.3.a) that NA/k(a) ∈ k× when a ∈ A×. Conversely if
NA/k(a) 6= 0, the k-linear map la : A → A is bijective. Its surjectivity yields an element
b ∈ A such that ab = 1, and we conclude using Remark 1.1.11. �

In particular the norm map induces a group morphism NA/k : A× → k×.

Proposition 5.3.3. Let A be an étale k-algebra. Then for any a ∈ A, we have

CpA/k(a) =
∏

f∈X(A)

(X − f(a)).

In particular

NA/k(a) =
∏

f∈X(A)

f(a) and TrA/k(a) =
∑

f∈X(A)

f(a).

Proof. We may replace k with ks, and thus by Proposition 5.2.6 assume that A
admits a k-basis ef for f ∈ X(A) such that efeg = 0 if f 6= g and e2

f = ef , and for every
a ∈ A

a =
∑

f∈X(A)

f(a)ef .

Then aef = f(a)ef for every f ∈ X(A). Computing the characteristic polynomial using
the basis ef for f ∈ X(A) yields the result. �

Corollary 5.3.4. Let K/k be a finite separable field extension and A a finite-
dimensional K-algebra. Then the K-algebra A is étale if and only if the k-algebra A
is étale. If this is the case, we have

NK/k ◦NA/K = NA/k and TrK/k ◦TrA/K = TrA/k .
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Proof. Let Ks be a separable closure of K and denote by X(A/K) the set of mor-
phisms of K-algebras A → Ks. For each f ∈ X(K) choose a morphism of k-algebras

f̃ : Ks → ks extending f (this is possible by Lemma 4.3.12 (i)). Consider the map

α : X(K)×X(A/K)→ X(A) ; (f, g) 7→ f̃ ◦ g.

If f, f ′ ∈ X(K) and g, g′ ∈ X(A/K) are such that f̃ ◦ g = f̃ ′ ◦ g′ : A → ks, composing

with the unique morphism of K-algebras K → A we see that f = f ′. Therefore f̃ = f̃ ′,

hence g = g′ (by injectivity of f̃), proving that α is injective.
Now let h ∈ X(A). Let f ∈ X(K) be the restriction of h along the inclusion K ⊂ A.

Let us view ks as a K-algebra via f . Then h : A → ks is a morphism of K-algebras,

and f̃ : Ks → ks is an isomorphism of K-algebras by Lemma 4.3.12 (ii). So we may set

g = f̃−1 ◦ h ∈ X(A/K). Then f̃ ◦ g = h, proving that α is surjective.
Thus, using Lemma 5.2.2,

|X(A/K)| · |X(K)| = |X(A)| ≤ dimk A = dimK A · [K : k] = dimK A · |X(K)|,

we see that the k-algebra A is étale if and only if the K-algebra A is étale.
Assume that this is the case. We use the fact the every element of X(A) is of the form

f̃ ◦ g ∈ X(A) for f ∈ X(K) and g ∈ X(A/K). If a ∈ A then, in view of Proposition 5.3.3

NK/k ◦NA/K(a) =
∏

f∈X(K)

f
( ∏
g∈X(A/K)

g(a)
)

=
∏

f∈X(K)

∏
g∈X(A/K)

f̃ ◦ g(a)

=
∏

h∈X(A)

h(a)

= NA/k(a),

and similarly

TrK/k ◦TrA/K(a) =
∑

f∈X(K)

f
( ∑
g∈X(A/K)

g(a)
)

=
∑

f∈X(K)

∑
g∈X(A/K)

f̃ ◦ g(a)

=
∑

h∈X(A)

h(a)

= TrA/k(a). �

Remark 5.3.5. Corollary 5.3.4 can be generalised using other methods to the case
when K/k is a finite field extension and A an arbitrary finite-dimensional k-algebra.

4. Finite sets with a Galois action

Let us write Γ = Gal(ks/k). Let A be a k-algebra. If f ∈ X(A) and γ ∈ Γ, we set
γf = γ ◦ f ∈ X(A). This defines a left action of the group Γ on the set X(A).

Lemma 5.4.1. Let A be a finite-dimensional k-algebra. Then the Γ-action on X(A)
is continuous (Definition 4.2.12).



5. Étale and Galois algebras 64

Proof. Let f ∈ X(A). Since A is finite-dimensional over k, the subalgebra L =
f(A) ⊂ ks is a field (Lemma 3.1.2), of finite degree as an extension of k. The open
subgroup Gal(ks/L) fixes f , and the statement follows from Lemma 4.2.11. �

Let us denote by FsetsΓ the category whose objects are finite discrete Γ-sets and
morphisms are Γ-equivariant maps. We have just seen that X(A) ∈ FsetsΓ for any étale
k-algebra A. If ϕ : A → B is a morphism of étale k-algebras, the map X(B) → X(A)
given by f 7→ f ◦ ϕ is Γ-equivariant, and one sees easily that X defines a contravariant
functor Etk → FsetsΓ.

Let now X be a finite discrete Γ-set of cardinality n. The set

M(X) = {maps X → ks}.
is naturally a commutative ks-algebra (via pointwise operations), which is isomorphic to
(ks)

n. The Γ-actions on ks and X induce a left Γ-action on M(X); namely for f ∈M(X)
and γ ∈ Γ we have

(γf)(x) = γ ◦ f(γ−1x) for all x ∈ X.
Then the fixed subset M(X)Γ coincides with the subset of Γ-equivariant maps X → ks.

Lemma 5.4.2. If X is a finite discrete Γ-set, the Γ-action on M(X) is continuous
and semilinear (Definition 4.4.2).

Proof. Let γ ∈ Γ and f ∈M(X). For any x ∈ X and λ ∈ ks, we have

(γ(λf))(x) = γ ◦ (λf)(γ−1x) = γ(λ)γ ◦ f(γ−1x) = γ(λ)(γf)(x),

so that the Γ-action on M(X) is semilinear.
Let now f ∈ M(X). There exists an open subgroup U1 (resp. U2) of Γ such that

U1 (resp. U2) acts trivially on the finite set X (resp. f(X)). Then U1 ∩ U2 is an open
subgroup of Γ fixing f . �

We deduce from Proposition 4.4.5 that the natural morphism of ks-algebras

(5.4.a) M(X)Γ ⊗k ks →M(X)

is bijective. Since M(X) ' (ks)
n, we conclude that M(X)Γ is an étale k-algebra of dimen-

sion n (see Proposition 5.2.13). To a map of finite discrete Γ-sets α : X → Y corresponds
a morphism of étale k-algebras M(Y )Γ →M(X)Γ given by f 7→ f ◦α, and one sees easily
that MΓ : X 7→M(X)Γ defines a contravariant functor FsetsΓ → Etk.

Let A be a k-algebra. If a ∈ A, then the map ΦA(a) : X(A)→ ks given by f 7→ f(a)
is Γ-equivariant. We thus define a morphism of k-algebras

ΦA : A→MΓ(X(A)).

Lemma 5.4.3. Let A be a finite-dimensional k-algebra. Then A is étale if and only
if ΦA is an isomorphism.

Proof. Since the k-algebra MΓ(X(A)) is étale, so will be A if ΦA is an isomorphism.
Conversely if A is étale, the composite

Aks = A⊗k ks
ΦA⊗kks−−−−−→MΓ(X(A))⊗k ks

(5.4.a)−−−−→M(X(A)) = M(X(Aks))

sends a to f 7→ f(a), hence is an isomorphism by Proposition 5.2.6 (applied to the ks-
algebra Aks). It follows that ΦA ⊗k ks is an isomorphism, hence so is ΦA (exercise). �
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We can now establish our first interesting equivalence of categories.

Theorem 5.4.4. Let Γ = Gal(ks/k). The functors X and MΓ define a contravariant
equivalence of categories Etk ' FsetsΓ.

Proof. Let X be a finite discrete Γ-set. Consider the map

ΨX : X → X(M(X)Γ)

mapping x ∈ X to the morphism of k-algebras M(X)Γ → ks given by f 7→ f(x). For
γ ∈ Γ and x ∈ X, we have for all f ∈M(X)Γ

ΨX(γx)(f) = f(γx) = γ(f(x)) = γ(ΨX(x)(f)),

so that the map ΨX is Γ-equivariant. This map is also injective: if f(x) = f(x′) for all
f ∈M(X), taking for f the map

y 7→

{
1 if y = x,

0 otherwise,

we see that x = x′. Since the source and target of the map ΨX have the same finite
number of elements, the map ΨX is bijective.

Conversely, we have seen in Lemma 5.4.3 that the morphism ΦA : A→MΓ(X(A)) is
bijective when A is étale k-algebra.

To conclude note that Ψ and Φ in fact define functors. �

The theorem implies that operations on étale algebras correspond bijectively to op-
erations on finite discrete Γ-sets, and that properties of objects in one category can be
read off on the other category. Here are a few examples:

Remark 5.4.5. If X,Y are finite discrete Γ-sets, there are natural Γ-equivariant
isomorphisms of k-algebras

MΓ(X t Y ) 'MΓ(X)×MΓ(Y ) ; MΓ(X × Y ) 'MΓ(X)⊗k MΓ(Y ).

Thus under the equivalence of Theorem 5.4.4 disjoint unions, resp. direct products, of
finite discrete Γ-sets correspond to direct products, resp. tensor products, of étale k-
algebras.

Remark 5.4.6. A nonzero étale k-algebra A is a field if and only if Γ acts transitively
on the set X(A). Indeed, as A is a product of fields by Corollary 5.2.12, this follows from
Remark 5.4.5.

Remark 5.4.7. Assume that Γ acts trivially on the finite set X. Then MΓ(X) may
be identified with the k-algebra consisting of the maps X → k. In particular MΓ(X) ' kn
as k-algebra, where n = |X|.

5. Galois algebras

In this section we fix a finite group G. As before ks denotes a separable closure of k,
and we write Γ = Gal(ks/k).

Definition 5.5.1. A commutative k-algebra endowed with a left action of G by
automorphisms of k-algebras will be called a G-algebra (over k). A morphism of G-
algebras is a G-equivariant morphism of k-algebras between G-algebras.
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If A is a G-algebra, then the set X(A) is naturally equipped with a right G-action by
Γ-equivariant permutations. Explicitly for g ∈ G and f ∈ X(A), we have f · g = f ◦ g.
Conversely, if X is discrete Γ-set with a right G-action, then MΓ(X) is a G-algebra.

Proposition 5.5.2. Let A be a nonzero étale G-algebra over k. Then the following
are equivalent:

(i) AG = k,
(ii) G acts transitively on X(A).

Proof. We use the correspondence established in Theorem 5.4.4. Let X = X(A),
and consider the discrete Γ-set Y = X/G. Since a map Y → ks is the same thing as a
map X → ks which is G-invariant as an element of M(X) = Aks , we have

MΓ(Y ) = MΓ(X/G) = MΓ(X)G = AG.

It follows that AG is an étale k-algebra such that X(AG) = Y . Thus AG = k if and only
if Y is a single point, i.e. G acts transitively on X (recall that X is nonempty, since A is
nonzero). �

Definition 5.5.3. Let A be an étale G-algebra over k. We say that A is a Galois
G-algebra (over k) if the following conditions hold:

(a) AG = k,
(b) dimk A ≥ |G|.
A morphism of Galois G-algebras is a morphism of G-algebras between Galois G-algebras.
We have thus defined the category of Galois G-algebras (over k).

If L/k is a field extension, it follows from Lemma 4.4.1, Corollary 5.2.14 and Lemma 5.2.5
that a G-algebra A is Galois over k if and only if AL is Galois over L.

Lemma 5.5.4. Let A be a Galois G-algebra. Then dimk A = |G|.

Proof. Since AG = k, the group G acts transitively on X(A) (Proposition 5.5.2).
Thus, as A is étale, we have dimk A = |X(A)| ≤ |G|. �

Lemma 5.5.5. Let A be an étale G-algebra. Then the following conditions are equiv-
alent:

(a) The G-algebra A is Galois.
(b) We have X(A) 6= ∅ and the G-action on X(A) is simply transitive.

Proof. A transitive G-action on a set of cardinality |G| is simply transitive, and
conversely any nonempty set with a simply transitive G-action has cardinality |G|. �

Lemma 5.5.6. Let A be a Galois G-algebra. Then the natural morphism G →
Autk−alg(A) is injective.

Proof. If g ∈ G acts trivially on A, then g acts trivially on X(A). Since the G-action
on X(A) is simply transitive (Lemma 5.5.5), we must have g = 1. �

Example 5.5.7. Let L/k be a field extension of finite degree. The following may be
deduced from Proposition 4.3.2. If the field extension L/k is Galois, then L is a Galois
Gal(L/k)-algebra over k. Conversely, if L is a G-algebra, then L/k is a Galois field
extension, and the morphism G→ Gal(L/k) is bijective.
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Example 5.5.8. Consider the set S consisting of all maps G→ k, with the k-algebra
structure given by pointwise operations. The group G naturally acts on S: if f is a map
G → k and g ∈ G, then g · f is the map G → k given by x 7→ f(x · g). The k-algebra S
is isomorphic to k|G|, hence is étale of dimension |G|. Moreover SG is the set of constant
maps G → k, which coincides with k ⊂ S. Therefore S is a Galois G-algebra. We have
X(S) = G with the trivial Γ-action (see Remark 5.4.7), and the G-action given by right
multiplication.

The correspondence between étale k-algebras and finite discrete Γ-sets admits the
following specialisation to the Galois G-algebras:

Proposition 5.5.9. The functors X and MΓ induce a contravariant equivalence
between the categories of Galois G-algebras and the category of nonempty finite discrete
Γ-sets with a simply transitive G-action.

Proof. This follows from Lemma 5.5.5 and Theorem 5.4.4. �

Corollary 5.5.10. Every morphism of Galois G-algebras is an isomorphism.

Proof. This is so in the category of nonempty finite discrete Γ-sets with a simply
transitive G-action. �

Definition 5.5.11. We say that a Galois G-algebra A is split if Γ acts trivially on
the set X(A).

It follows from Proposition 5.5.9 that a Galois G-algebra is split if and only if it is
isomorphic to the algebra S of Example 5.5.8.

Had we defined Galois G-algebras over commutative algebras (as opposed to just
fields), the next statement would assert that a Galois algebra splits when scalars are
extended to itself.

Proposition 5.5.12. Let A be a Galois G-algebra, and consider the split G-algebra S
of Example 5.5.8. Then there is an isomorphism of k-algebras A⊗kA ' S⊗kA, which is
G-equivariant for the actions via the first factors, and A-linear for the module structures
via the second factors.

Proof. Let X = X(A). Since G act simply transitively on X, the map α : G×X →
X ×X given by (g, x) 7→ (x · g, x) is bijective. It is Γ-equivariant, if we let Γ act trivially
on G. Under the equivalence of Theorem 5.4.4, this yields an isomorphism of k-algebras
β : A⊗kA→ S⊗kA. Since α is G-equivariant for the right G-actions via the first factors,
it follows that β is G-equivariant for the left G-actions via the first factors.

To prove the last statement, note that the composite G×X α−→ X×X → X, where the
last map is the second projection, coincides with the projection G×X → X. Therefore
the composite A → A⊗k A → S ⊗k A, where the first map is a 7→ 1⊗ a, coincides with
the morphism of k-algebras A→ S ⊗k A given by a 7→ 1⊗ a. �

Proposition 5.5.12 will be exploited via the next corollary.

Corollary 5.5.13. Let A be a Galois G-algebra, and A → K a morphism of k-
algebras, where K is a field. Then the Galois G-algebra AK over K is split.
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Proof. Let f : A → K be the morphism. Since the image of f is a field (by
Lemma 3.1.2), we may replace K with the image of f , and thus assume that f is surjective.
Let I = ker f , so that A/I = K. Then the isomorphism of A-modules β : A⊗kA→ S⊗kA
of Proposition 5.5.12 induces an isomorphism of K-vector spaces β′ : A⊗k K → S ⊗k K,
and it follows from Proposition 5.5.12 that β′ is a morphism of G-algebras over K. �

We conclude this section with formulas expressing traces, resp. norms, in Galois G-
algebras in terms of sums, resp. products, of “conjugates”, which generalise the familiar
case of Galois field extensions.

Proposition 5.5.14. Let A be a Galois G-algebra. Then for any a ∈ A, we have in
k[X] (using the notation of Definition 5.3.1)

CpA/k(a) =
∏
g∈G

(X − g · a).

In particular, we have in k,

NA/k(a) =
∏
g∈G

g · a and TrA/k(a) =
∑
g∈G

g · a.

Proof. Pick an element f in the nonempty set X(A). Then X(A) = {f ◦ g|g ∈ G},
hence the formula follows from Proposition 5.3.3. �

Definition 5.5.15. Let H ⊂ G be a subgroup and B a H-algebra over k. Consider
the set

IndGH(B) = {maps f : G→ B such that f(h · g) = h · f(g) for all g ∈ G, h ∈ H},

viewed as a k-algebra, via pointwise operations on B. If f ∈ IndGH(B) and g ∈ G, we

define an element g · f ∈ IndGH B by mapping a x ∈ G to f(x · g). This gives IndGH(B) the
structure of a G-algebra.

Remark 5.5.16. TheG-algebra S considered in Example 5.5.8 coincides with IndG1 (k).

There are morphisms of H-algebras

(5.5.a) π : IndGH(B)→ B ; f 7→ f(1),

and

(5.5.b) ν : B → IndGH(B) ; ν(b)(g) =

{
g · b if g ∈ H
0 if g 6∈ H

for b ∈ B and g ∈ G.

Note that π ◦ ν = idB .

Lemma 5.5.17. Let H be a subgroup of G, and B an H-algebra over k. Then the
H-algebra B is Galois if and only if the G-algebra IndGH(B) is Galois.

Proof. Let A = IndGH(B). Observe that the choice of a set of representatives of G/H
yields an isomorphism of k-algebras A ' B|G/H|. It thus follows from Lemma 5.2.10 (ii)
that B is étale if and only if A is so. Moreover

dimk A = dimk B
|G/H| = |G/H|dimk B,

so that dimk B = |H| if and only if dimk A = |G|. The morphism π : A → B of (5.5.a)
induces an isomorphism AG ' BH , so that AG = k if and only if BH = k. �
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Proposition 5.5.18. Let A be a Galois G-algebra over k.

(i) There exists a morphism of k-algebras f : A→ ks, and its image L does not depend
on the choice of f .

(ii) The k-algebra L is a Galois field extension of k.

(iii) There exists a subgroup H of G isomorphic to Gal(L/k), and such that A ' IndGH(L)
(where L is viewed as an H-algebra via the isomorphism Gal(L/k) ' H).

Proof. Let X = X(A). By Lemma 5.5.5, we may find an element f ∈ X, and
X(A) = {f ◦ g|g ∈ G}. For g ∈ G, the morphisms f and f ◦ g have the same image (as
g : A→ A is surjective), proving (i).

The finite-dimensional k-algebra L is a field (Lemma 3.1.2), and the surjective mor-
phism of k-algebras ϕ : A→ L (induced by f) identifies X(L) with the Γ-orbit Y ⊂ X of
f (see Remark 5.4.6). Let H ⊂ G be the subgroup of elements mapping Y to itself. Then
the morphism ϕ is H-equivariant. Let y, z ∈ Y . Since G acts transitively on X, we may
find g ∈ G such that z = y · g. Then every element of Y is of the form γy for some γ ∈ Γ,
and we have (γy) · g = γ(y · g) = γz ∈ Y , proving that g ∈ H. Therefore the H-action on
Y is transitive, and in fact simply transitive (because G acts simply transitively on X). It
follows from Proposition 5.5.9 that L is a Galois H-algebra over k. By Example 5.5.7, the
extension L/k is Galois and the H-action on L induces an isomorphism H ' Gal(L/k)
by Example 5.5.7. We have proved (ii).

We define a morphism of k-algebras ψ : A→ IndGH(L) by mapping a ∈ A to the map
g 7→ ϕ(g · a) (which is H-equivariant because ϕ is so). The morphism ψ is G-equivariant,
since for g ∈ G and a ∈ A, we have

(g · ψ(a))(x) = ψ(a)(x · g) = ϕ(x · g · a) = ψ(g · a)(x) for all x ∈ G,
so that g ·ψ(a) = ψ(g ·a). Since both A and IndGH(A) are Galois G-algebras, the morphism
ψ has to be an isomorphism (Corollary 5.5.10). This concludes the proof of (iii). �

Lemma 5.5.19. In the situation of Proposition 5.5.18, the norm maps NL/k and NA/k

have the same image.

Proof. We use the morphisms π and ν of (5.5.a) and (5.5.b). Let x ∈ L, and
f = ν(x) ∈ A. Then, in view of Proposition 5.5.14

NA/k(f) = π ◦NA/k(f) =
∑
g∈G

π(g · f) =
∑
g∈G

f(g) =
∑
h∈H

h · x = NL/k(x).

This proves that NL/k(L) ⊂ NA/k(A). Now the morphism ν : L → A allows us the
view A as an L-algebra, and using transitivity of the norms (Corollary 5.3.4), we have
NA/k = NL/k ◦NA/L, so that in particular NA/k(A) ⊂ NL/k(L). �
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Exercises

Exercise 5.1. Let A be a k-algebra. Recall that X(A) denotes the set k-algebra
morphisms A→ ks, where ks is a separable closure of k.

We assume that A is étale.

(i) Let B be a quotient algebra of A. Show that B is étale and that the map X(B)→
X(A) is injective.

(ii) Let B be a subalgebra of A. Show that B is étale and that the map X(A)→ X(B)
is surjective. (Hint: assuming that the map is not surjective, produce an element of
the kernel of M(X(B))→M(X(A).)

(iii) Show that A has only finitely many subalgebras and quotient algebras.
(iv) Assume that k is infinite. Show that there exists a separable polynomial P such

that A ' k[X]/P . (Hint: to show that A is generated by a single element as a
k-algebra, observe that no k-vector space is a finite union of proper subspaces.)

Exercise 5.2. Let A be a finite-dimensional k-algebra. For an element a ∈ A recall
that TrA/k(a) ∈ k is the trace of the k-linear map A→ A given by x 7→ ax.

(i) Show that a finite-dimensional commutative k-algebra A is étale if and only if for
every nonzero a ∈ A there exists b ∈ A such that TrA/k(ab) 6= 0.

(ii) Show that a finite field extension L/k is separable if and only if the map TrL/k : L→
k is nonzero.

Exercise 5.3. LetK/k be a field extension. We have seen in Example 5.5.7 that there
is at most one group G (up to isomorphism) such that K is a Galois G-algebra (namely
K/k must be Galois, and G = Gal(K/k)). We give here an example of an algebra A
(which is not field) admitting G-Galois structures for two nonisomorphic groups G.

Let K be a separable quadratic extension of k, and A = K ×K.

(i) Define a Z/4-Galois algebra structure on A.
(ii) Define a (Z/2)× (Z/2)-Galois algebra structure on A.

Exercise 5.4. Let ks be a separable closure of k, and Γ = Gal(ks/k). Let A
be an étale k-algebra of dimension n. Consider the associated discrete Γ-set X =
Homk−alg(A, ks). Let Y ⊂ Xn be the set of those (x1, . . . , xn) such that xi 6= xj when
i 6= j, with the Γ-action given by

γ(x1, . . . , xn) = (γx1, . . . , γxn) for γ ∈ Γ, and x1, . . . , xn ∈ X.

The symmetric group Sn acts on Y by

σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)),

where σ ∈ Sn and x1, . . . , xn are pairwise distinct elements of X. Denote by Z the
quotient of Y be the action of the subgroup An of even permutations (the kernel of the
signature morphism Sn → Z/2).

(i) Show that Z is a discrete Γ-set having two elements.

We denote by ∆ the corresponding étale k-algebra of dimension two; it is called the
discriminant algebra of A.
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Assume now that k has characteristic 6= 2. Let e1, . . . , en be a k-basis of A, let
f1, . . . , fn be the elements of X, and consider the matrix M = (fi(ej)) ∈Mn(ks). Set

u = detM ∈ ks.
Let Γ0 be the subgroup of Γ consisting of those elements acting by even permutations on
the set X.

(ii) Let γ ∈ Γ. Show that γu = u if γ ∈ Γ0 and γu = −u otherwise.

Let d be the determinant of the matrix (TrA/k(eiej)) ∈Mn(k).

(iii) Show that d = u2. (Hint: compute the product M t ·M .)
(iv) Conclude that ∆ ' k[X]/(X2 − d).
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CHAPTER 6

Torsors, cocyles, and twisted forms

In this chapter we introduce the notion of torsor (also called principal homogeneous
space), under a group G equipped with a continuous action of the absolute Galois group.
Such objects coincide with G as sets, but carry a different Galois action.

Torsors naturally appear in the study of twisted forms of algebraic objects, that is,
objects defined over a base field, which become isomorphic to a given object (called split)
over the separable closure of the base field. In this situation, the group G is the automor-
phism group of the split object. Examples of twisted forms include étale algebras, Galois
algebras, finite-dimensional central simple algebras, nondegenerate quadratic forms,. . .

A related notion is that of 1-cocyles. These objects provide a more computational
approach to torsors, and admit higher dimensional generalisations which will be explored
in the next chapters. The set of 1-cocyles is endowed with a natural equivalence relation,
so that the set of equivalence classes (called the first cohomology set) is in bijection with
the set of isomorphism classes of twisted forms, or of torsors. An important subtlety is
that twisted forms correspond to torsors, but not to 1-cocyles; this is only true “up to
isomorphism”, and therefore some care is required when working with twisted forms and
1-cocyles. Another pitfall is that, as one might expect, the cohomology of various groups
are related by exact sequences, but these are only sequences of pointed sets. In particular
such sequences only provide information concerning the fiber over the split object.

1. Torsors

In this section Γ is a profinite group, and G a discrete Γ-group (Definition 4.2.12).
We will denote Γ-actions on a set by x 7→ γx for γ ∈ Γ, and left, resp. right, G-actions
by x 7→ g · x, resp. x 7→ x · g, for g ∈ G. In particular, the group operation in G will be
denoted by (g, h) 7→ g · h.

Definition 6.1.1. A left G-action on a discrete Γ-set X is called compatible if

γ(g · x) = (γg) · (γx) for x ∈ X and g ∈ G.
Similarly, a right G-action on a discrete Γ-set X is called compatible if

γ(x · g) = (γx) · (γg) for x ∈ X and g ∈ G.

Definition 6.1.2. Let P be a discrete Γ-set equipped with a compatible right G-
action. We say that P is a G-torsor if P is nonempty and the G-action on P is simply
transitive. A morphism of G-torsors is a map between torsors compatible with the Γ- and
G-actions. We have thus defined the category of G-torsors.

Observe that a morphism of G-torsors is always bijective (because of the simple
transitivity of the G-action), and the inverse map is automatically Γ- and G-equivariant.
Thus all morphisms of G-torsors are isomorphisms.
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Example 6.1.3. Let Γ = Gal(ks/k), and G a finite group considered as a discrete
Γ-group with trivial Γ-action. We have seen in Proposition 5.5.9 that the category of
G-torsors is equivalent to the opposite of the category of Galois G-algebras over k.

Let X be a discrete Γ-set with a compatible left G-action, and let P be a G-torsor.
We now describe a procedure that yields another discrete Γ-set PX, called the twist of X
by P .

Definition 6.1.4. We define an equivalence relation on the set P×X by letting (p, x)
be equivalent to (p · g, g−1 · x), whenever p ∈ P, x ∈ X, g ∈ G. The set of equivalence
classes will be denoted by PX.

Setting γ(p, x) = (γp, γx) for p ∈ P, x ∈ X, γ ∈ Γ defines a Γ-action on the set PX.

Lemma 6.1.5. The Γ-action on PX is continuous.

Proof. Let (p, x) be an arbitrary element of PX, where p ∈ P and x ∈ X. By
continuity of the Γ-actions on P and X, there are open subgroups U and V in Γ fixing
respectively p and x. Then U ∩ V is an open subgroup in Γ which fixes (p, x) ∈ PX. �

To each element p ∈ P correspond a bijection

(6.1.a) πp : X → PX , x 7→ (p, x).

This map is not Γ-equivariant in general; in fact we have for any p ∈ P, x ∈ X, γ ∈ Γ,

(6.1.b) πp(γx) = γπγ−1p(x).

Also observe that, for any p ∈ P, x ∈ X, g ∈ G,

(6.1.c) πp(g · x) = πp·g(x).

Let now F/k be a Galois field extension, and Γ = Gal(F/k). Assume that V is an
F -vector space, equipped with a semilinear continuous left Γ-action and a compatible
left G-action by F -automorphisms. Then the set PV is naturally an F -vector space, the
Γ-action on PV is semilinear, and for p ∈ P the map πp : V → PV is F -linear. The
set HomF (V, PV ) is naturally endowed with a Γ-action, given by the formula of (4.4.b).
Setting, for g ∈ G and f ∈ HomF (V, PV )

(f · g)(v) = f(g · v) for v ∈ V ,

defines a right G-action on the set HomF (V, PV ).

Lemma 6.1.6. The map P → HomF (V, PV ) given by p 7→ πp is Γ- and G-equivariant.

Proof. This follows from (6.1.b) and (6.1.c). �

2. Twisted forms

Let us denote by Sepk the category of separable field extensions1 of k, a morphism
between two such extensions being just a morphism of k-algebras. Let F be a functor
Sepk → Sets. For any L ∈ Sepk, the group Autk−alg(L) naturally acts on F(L); explicitly
if γ ∈ Autk−alg(L) and x ∈ F(L), then γx = F(γ)(x).

1recall that for us a separable field extension is algebraic.
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Definition 6.2.1. We will say that F is a sheaf of sets, or simply a k-set (this
terminology is nonstandard), if for all morphisms K → L in Sepk with L/K Galois, the
Gal(L/K)-action on the set F(L) is continuous, and the map

F(K)→ F(L)Gal(L/K)

is bijective. A morphism of k-sets is just a morphism of functors between k-sets. The
notion of k-groups is defined similarly.

Remark 6.2.2. Let ks be a separable closure of k, and Γ = Gal(ks/k). Observe
that if F a k-set, then F(ks) is a discrete Γ-set. Conversely let X be a discrete Γ-set.
For L ∈ Sepk and ϕ ∈ Homk−alg(L, ks), let us set Xϕ = XGal(ks/ϕ(L)). Let L → L′

be a morphism in Sepk. By Lemma 4.3.12, there exist ϕ ∈ Homk−alg(L, ks) and ϕ′ ∈
Homk−alg(L′, ks), and for any such pair there exists α ∈ Gal(ks/k) such that α◦ϕ = ϕ′◦f .
The action of α on X induces a map Xϕ → Xϕ′ . Any other choice for α is of the form
α ◦ γ where γ ∈ Gal(ks/ϕ(L)), hence induces the same map Xϕ → Xϕ′ . It follows that,
when L ∈ Sepk is fixed, the sets Xϕ for ϕ ∈ Homk−alg(L, ks) form a inverse system (here
the set Homk−alg(L, ks) is directed by letting ϕ′ ≤ ϕ for every ϕ,ϕ′). We denote by
F(L) its inverse limit. Observe that the projections F(L)→ Xϕ are bijections (all maps
Xϕ → Xϕ′ are bijections)2; taking L = ks and ϕ = id, we obtain a canonical identification
F(ks) = X. Moreover the association L 7→ F(L) naturally defines a k-set F . From the
construction, we see that if F ,G are k-sets, then every Γ-equivariant map F(ks)→ G(ks)
is induced by a unique morphism of k-sets F → G (recall that F(L) = F(ks)

Gal(ks/L) for
any subextension L of ks/k).

Example 6.2.3. Any set (resp. group) X defines a k-set (resp. group) taking the
value X on every separable extension L/k. We will denote again by X this k-set (resp.
group), and refer to it as the constant set (resp. group) X. Note that all Galois group
actions on X are trivial.

Example 6.2.4. Let V be a vector space over k. Every morphism E → L in Sepk
induces a group morphism VE → VL, so that we may define a functor Sepk → Groups by
L 7→ VL. We have proved in Lemma 4.4.3 that this functor is in fact a k-group.

When V = k, we will denote this k-group by Ga. Thus Ga(L) = L (as groups) for
any separable extension L/k.

Let us now fix an integer n ∈ N and a collection of integers m1, . . . ,mn,m
′
1, . . . ,m

′
n ∈

N. When V is a vector space over a field K we will write

T (V ) =

n⊕
i=1

HomK(V ⊗mi , V ⊗m
′
i),

and if ϕ : V →W is an isomorphism of K-vector spaces, we will write

T (ϕ) =

n⊕
i=1

HomK((ϕ−1)⊗mi , ϕ⊗m
′
i) : T (V )→ T (W ).

If ψ : U → V is another isomorphism of K-vector spaces, then

(6.2.a) T (ϕ) ◦ T (ψ) = T (ϕ ◦ ψ).

2in other words: we may define F(L) = Xϕ, because up to a unique bijection, the set Xϕ depends

only on L, and not depend on the choice of ϕ : L → ks.
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In fact we thus defined a functor T from the subcategory of K-vector spaces, where
morphisms are the K-automorphisms, to itself.

Let L/k is a field extension, and V a k-vector space. We view VL = V ⊗k L as an
L-vector space. Taking K = L in the above construction we obtain an L-vector space
T (VL). There is a natural k-linear map T (V )→ T (VL), and we will denote by xL ∈ T (VL)
the image of an element x ∈ T (V ).

Remark 6.2.5. The natural L-linear map T (V )L → T (VL) need not be an isomor-
phism (unless for instance dimk V <∞, or L/k is finite).

Let us now fix a Galois extension F/k, and set Γ = Gal(F/k).

If W is an F -vector space with a semilinear Γ-action, then T (W ) inherits a semilinear
Γ-action (see the paragraph just below Definition 4.4.2).

When W,W ′ are F -vector spaces, let us denote by IsomF (W,W ′) the set of isomor-
phisms of F -vector spaces W → W ′. If W,W ′ are equipped with a semilinear Γ-action,
the group Γ acts on IsomF (W,W ′) ⊂ HomF (W,W ′) by the formula (4.4.b).

Lemma 6.2.6. Let W,W ′ be F -vector spaces with a semilinear Γ-action. Then the
morphism IsomF (W,W ′)→ IsomF (T (W ), T (W ′)) given by ϕ 7→ T (ϕ) is Γ-equivariant.

Proof. Let U1, U
′
1, U2, U

′
2 be F -vector spaces with a semilinear Γ-action, and ϕ : U1 →

U2, ϕ′ : U ′1 → U ′2 be F -linear isomorphisms. Let γ ∈ Γ. Then clearly γ(ϕ ⊕ ϕ′) =
(γϕ)⊕ (γϕ′) and γ(ϕ⊗ ϕ′) = (γϕ)⊗ (γϕ′). Let now

ψ = HomF (ϕ−1, ϕ′) : HomF (U1, U
′
1)→ HomF (U2, U

′
2).

For f ∈ HomF (U1, U
′
1), we have

(γψ)(f) = γ(ψ(γ−1f)) = γ ◦ ϕ′ ◦ γ−1 ◦ f ◦ γ ◦ ϕ−1 ◦ γ−1 = (γϕ′) ◦ f ◦ (γϕ),

proving that γψ = HomF ((γϕ)−1, γϕ′). In view of the construction of the functor T , this
proves the statement. �

Lemma 6.2.7. If V is a k-vector space, the natural k-linear map T (V ) → T (VF )
induces an isomorphism T (V ) ' T (VF )Γ.

Proof. Let U,U ′ be k-vector spaces. From the Γ-equivariant identifications UF ⊕
U ′F = (U ⊕ U ′)F and UF ⊗F U ′F = (U ⊗k U ′)F , we deduce that by Lemma 4.4.3

(UF ⊕ U ′F )Γ = U ⊕ U ′ and (UF ⊗F U ′F )Γ = U ⊗k U ′.
Now the Γ-action on U ′F induces a Γ-action on Homk(U,U ′F ), and the identification
HomF (UF , U

′
F ) = Homk(U,U ′F ) given by f 7→ f |U is Γ-equivariant. Thus

(HomF (UF , U
′
F ))Γ = Homk(U,U ′F )Γ = Homk(U, (U ′F )Γ) = Homk(U,U ′),

and the statement follows as above from the construction of T . �

We now fix a k-vector space S and element s ∈ T (S). Recall that we fixed a Galois
extension F/k, and set Γ = Gal(F/k).

Definition 6.2.8. An F/k-twisted form, or simply a twisted form, of (S, s) is a pair
(R, r), where R is a k-vector space and r ∈ T (R) so that there exists an isomorphism of
F -vector spaces ϕ : SF → RF such that T (ϕ)(sF ) = rF . A morphism (R, r) → (R′, r′)
of twisted forms of (S, s) is an isomorphism of k-vector spaces ψ : R → R′ such that
T (ψ)(r) = r′. This defines a category of twisted forms of (S, s).
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Remark 6.2.9. The isomorphism ϕ is not part of the data, we only require that it
exists.

Let (R, r) be a twisted form of (S, s). For every separable extension L/k, consider
the set

I(L) =

{
isomorphisms of L-vector spaces ϕ : SL → RL

such that T (ϕ)(sL) = rL.

}
When f : E → L is a morphism in Sepk and ϕ ∈ I(E), the map I(f)(ϕ) = ϕ⊗E idL fits
into the commutative diagram

(6.2.b)

SE
ϕ //

idS ⊗kf
��

RE

idR⊗kf
��

SL
I(f)(ϕ) // RL

We have thus defined a functor I : Sepk → Sets. When necessary, we will use the more
precise notation I(R,r) for this functor. It follows from the diagram (6.2.b) (with E = L
and f = γ) that the action of γ ∈ Autk−alg(L) on ϕ ∈ I(L) is given by

(6.2.c) γϕ = (idR⊗kγ) ◦ ϕ ◦ (idS ⊗kγ−1).

In particular, when L = F we recover the action induced by that on IsomF (SF , RF ) ⊂
HomF (SF , RF ) (see (4.4.b)).

We will make the following assumption:

There exists a finite subset B ⊂ S such that the elements of I(L)
are determined by their restrictions to B ⊂ SL.

(6.2.d)

Note that the assumption (6.2.d) is satisfied when the k-vector space S is finite-dimensional
(taking for B a k-basis of S).

Proposition 6.2.10. Under the assumption (6.2.d), the functor I is a k-set.

Proof. Let f : K → L be a morphism in Sepk so that L/K is Galois, and ϕ ∈ I(L).
Since Gal(L/K) acts continuously on RL (by Lemma 4.4.3), we may find an open normal
subgroup U of Gal(L/K) acting trivially on ϕ(b⊗1) ∈ RL for b ∈ B. Then for any γ ∈ U
and b ∈ B, we have by (6.2.c)

γϕ(b⊗ 1) = (idR⊗kγ) ◦ ϕ ◦ (idS ⊗kγ−1)(b⊗ 1) = ϕ(b⊗ 1),

so that the subgroup U fixes ϕ. We have proved that I(L) is a discrete Gal(L/K)-set.
Since the morphism idR⊗kf : RK → RL is injective, the diagram (6.2.b) (with E =

K) implies that I(f) : I(K)→ I(L) is injective. Assume now that ϕ lies in I(L)Gal(L/K).
In view of the formula (6.2.c), the morphism ϕ : SL → RL is Gal(L/K)-invariant. In view
of Lemma 4.4.3, there is an induced K-linear map

ψ = ϕGal(L/K) : SK → RK ,

which is an isomorphism (with inverse (ϕ−1)Gal(L/K)). We have ψL = ϕ by Propo-
sition 4.4.5, and the condition T (ϕ)(sL) = rL implies that T (ψ)(sK) = rK (because
T (RK)→ T (RL) is injective). We have thus constructed an element ψ ∈ I(K) mapping
to ϕ ∈ I(L). �
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In the special case (R, r) = (S, s), the functor I is naturally a k-group that we denote
by Aut(S, s). Thus for every separable extension L/k

Aut(S, s)(L) = {L-automorphisms ϕ of SL such that T (ϕ)(sL) = sL}.

In general I(L) is equipped with a simply transitive right Aut(S, s)(L)-action. Thus
Aut(S, s)(F ) is a discrete Γ-group, and I(F ) is an Aut(S, s)(F )-torsor.

We now start with an Aut(S, s)(F )-torsor P and construct a twisted form (R, r)
of (S, s). Consider the discrete Γ-set PSF introduced in Definition 6.1.4. The element
sF ∈ T (SF ) is Aut(S, s)(F )-invariant (by definition of Aut(S, s)). It thus follows from
(6.1.c) that its image r′ = T (πp)(sF ) ∈ T (PSF ) does not depend on the choice of p ∈ P .
The element r′ is Γ-invariant, because for γ ∈ Γ

γr′ = γ(T (πp)(sF )) = (γT (πp))(γsF ) by (4.4.b)

= T (γπp)(γsF ) by Lemma 6.2.6

= T (γπp)(sF ) as sF is defined over k

= T (πγp)(sF ) by Lemma 6.1.6

= r′ as r′ does not depend on p.

Setting R = (PSF )Γ, we have a Γ-equivariant identification of F -vector spaces RF = PSF
by Proposition 4.4.5. The element r′ lies in T (PSF )Γ = T (RF )Γ. By Lemma 6.2.7, this
implies that r′ = rF for some r ∈ T (R). The choice of an element p ∈ P yields an

isomorphism ϕ : SF
πp−→ PSF = RF such that T (ϕ)(sF ) = rF . We have thus constructed

a twisted form (R, r) of (S, s), which will be denoted by (R(P ), r(P )) when necessary.

Proposition 6.2.11. The above defined associations

(R, r) 7→ I(R,r)(F ) and P 7→ (R(P ), r(P ))

induce an equivalence between the categories of Aut(S, s)(F )-torsors and of twisted forms
of (S, s).

Proof. Let (R, r) be a twisted form of (S, s), and set P = I(R,r)(F ). The isomor-
phism of F -vector spaces

u : RF
ϕ−1

−−→ SF
πϕ−−→ PSF = R(P )F

does not depend on the choice of ϕ ∈ P , since for g ∈ Aut(S, s)(F ), we have by (6.1.c)

πϕ·g ◦ (ϕ · g)−1 = πϕ ◦ g ◦ g−1 ◦ ϕ−1 = πϕ ◦ ϕ−1.

We have T (u)(rF ) = T (πϕ)(sF ) = r(P )F (by construction of r(P )). The morphism u is
Γ-equivariant, since for γ ∈ Γ we have by (6.2.c) and (6.1.b)

u ◦ (idR⊗γ) = πϕ ◦ ϕ−1 ◦ (idR⊗γ)

= πϕ ◦ (idS ⊗γ) ◦ (γ−1ϕ−1)

= (idR(P )⊗γ) ◦ πγ−1ϕ ◦ (γ−1ϕ−1)

= (idR(P )⊗γ) ◦ u,

where we used the independence of u in the choice of ϕ for the last step. In view of
Lemma 4.4.3, the isomorphism u induces an isomorphism uΓ : R → R(P ) of K-vector
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spaces such that T (uΓ)(r) = r(P ). Therefore uΓ induces an isomorphism of twisted
forms (R, r) ' (R(P ), r(P )).

Conversely, let P be a Aut(S, s)(F )-torsor, and write (R, r) = (R(P ), r(P )). It
follows from Lemma 6.1.6 that the map v : P → I(R,r)(F ) sending p ∈ P to the map

SF
πp−→ PSF = RF is an isomorphism of Aut(S, s)(F )-torsors.
To conclude, it only remains to notice that these associations define functors, and

that the isomorphisms u and v are functorial. �

3. Examples of twisted forms

In this section, we provide a few examples of situations where the setting of §6.2
applies. First, note that Proposition 6.2.10 yields many examples of k-groups:

Example 6.3.1. Let W be a k-vector of finite dimension. Taking s = 0 and T (V ) = V
yields the k-group GL(W ), which satisfies for any separable field extension L/k.

GL(W )(L) = AutL(WL).

When n is an integer, we write GLn = GL(kn), as well as Gm = GL1.

Example 6.3.2. More generally, let A be a finite-dimensional k-algebra and S an
A-module, of finite dimension over k. The A-module structure is given by a k-linear map
S⊗k A→ S. After choosing a k-basis of A, we may set T (V ) = Homk(V ⊗k A, V ). Then

L 7→ AutAL(SL)

defines a k-group. When S = A⊕n, we denote this k-group by GLn(A). In particular we
have GL1(A)(L) = (AL)× for all separable field extensions L/k.

Let us now fix a k-algebra S, which is assumed to be finitely generated (i.e. coincides
with the subalgebra generated by some finite subset). Set T (V ) = Homk(V ⊗kV, V ). The
multiplication in S defines an element s ∈ T (S), and the condition (6.2.d) is satisfied.
Therefore

L 7→ AutL−alg(SL)

defines a k-group.
Let A be a k-algebra such that AF ' SF as F -algebras. Then the k-vector space A

together with the product of A, viewed as an element of Homk(A⊗kA,A), define a twisted
form of (S, s). Conversely, let (R, r) be a twisted form of (S, s). Then r defines a product
R ⊗k R → R. The induced product on RF defines a F -algebra structure (isomorphic to
SF ). Since R → RF is injective, this implies that the product on R is associative (and
commutative if S is so). We claim that

(γa)(γb) = γ(ab) ∈ RF for γ ∈ Γ, and a, b ∈ RF .

Indeed under the identification F ' F ⊗F F the automorphism corresponds to γ ⊗ γ (as
γ is multiplicative), hence γ(a ⊗ b) corresponds to (γa) ⊗ (γb) under the isomorphism
(R ⊗k R)F ' RF ⊗F RF . Since rF : (R ⊗k R)F ' RF ⊗F RF → RF is Γ-equivariant
(being defined over k), the claim follows. Using the claim, we see that

γ1 = (γ1)1 = (γ1)(γγ−11) = γ(1γ−11) = γγ−11 = 1 ∈ RF ,
so that 1 ∈ R ⊂ RF , and it follows that the product on R defines a k-algebra structure.

In conclusion, a twisted form of (S, s) is precisely a k-algebra A (commutative if S is
so) such that AF ' SF as F -algebras. Note that if the twisted form (R, r) corresponds
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to the Aut(S, s)(F )-torsor P under the correspondence of Proposition 6.2.11, then the
k-algebra R may be identified with PSF , with its natural product. We have thus proved:

Proposition 6.3.3. Let S be a finitely generated k-algebra. There is an equivalence
between the category whose objects are the k-algebras A such that AF ' SF as F -algebras,
and morphisms are isomorphisms of k-algebras, and the category of AutF−alg(SF )-torsors.

We now list a few typical applications of Proposition 6.3.3, where F = ks. Variants
may be obtained by taking F/k an arbitrary Galois extension (yielding classifications of
objects “split by F/k”).

Example 6.3.4. (Étales algebras) Étale k-algebras of dimension n are twisted forms
of the k-algebra kn (see Proposition 5.2.13). The group Γ acts trivially on the set X(kn),
which consists of n points. From the equivalence of categories given in Theorem 5.4.4,
it follows that Autks−alg((ks)

n) is the symmetric group Sn. Thus étale k-algebras of
dimension n correspond to Sn-torsors (where Sn is given the trivial Gal(ks/k)-action).

Example 6.3.5. (Galois G-algebras) Let G be a finite group, viewed as a discrete Γ-
group with the trivial Gal(ks/k)-action. Consider the split Galois G-algebra S described
in Example 5.5.8. Its automorphism group is the group of G-equivariant automorphisms
of the set X(S) = G, which coincides with G. Therefore Galois G-algebras correspond to
G-torsors. One may see that the G-torsor corresponding to a G-algebra A is isomorphic
to X(A), thus recovering Proposition 5.5.9.

Example 6.3.6. (Quadratic forms) Let n be an integer and assume that the charac-
teristic of k is not 2. A basic result in quadratic form theory asserts that all nondegen-
erate quadratic forms of rank n are twisted forms of the “split” quadratic form q given
by (x1, . . . , xn) 7→ x2

1 + · · · + x2
n. For each separable field extension L/k, let On(L) be

the group of isometries of the quadratic form qL. Then On defines a k-group by Proposi-
tion 6.2.10, and On(ks)-torsors correspond to isometry classes of nondegenerate quadratic
forms of rank n.

Example 6.3.7. (Central simple algebras) Let n be an integer. Setting for each
separable field extension L/k

PGLn(L) = AutL−alg(Mn(L))

defines a k-group by Proposition 6.2.10. In view of Corollary 3.3.4, finite-dimensional
central simple k-algebras of degree n correspond to PGLn(ks)-torsors.

4. 1-cocyles

In this section we fix a profinite group Γ. Let G be a discrete Γ-group. As before, we
denote by g 7→ γg the action on G of γ ∈ Γ and by (g, h) 7→ g · h the group operation in
G.

Definition 6.4.1. A 1-cocyle of Γ with values in G is a continuous map ξ : Γ → G
(for the discrete topology on G) that we denote by γ 7→ ξγ , and such that

(6.4.a) ξγτ = ξγ · (γξτ ) for all γ, τ ∈ Γ.

The set of 1-cocyles Γ → G will be denoted by Z1(Γ, G). We define an equivalence
relation by declaring two 1-cocyles ξ, η cohomologous if there is a ∈ G such that

ηγ = a−1 · ξγ · (γa) for all γ ∈ Γ.
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The set of equivalence classes is denoted by H1(Γ, G).

Assume now that M is a discrete Γ-module (we still use the multiplicative notation
for the group operation in M even though it is commutative). Setting for ξ, η ∈ Z1(Γ,M)
and γ ∈ Γ

(ξ · η)γ = ξγ · ηγ ,
turns Z1(Γ,M) into an abelian group, compatibly with the equivalence relation defined
above. Thus H1(Γ,M) is naturally an abelian group.

Remark 6.4.2. If ξ : Γ→ G is a 1-cocyle, note that ξ1 = 1, and that

ξ−1
γ = γξγ−1 for all γ ∈ Γ.

Remark 6.4.3. If the Γ-action on the discrete Γ-group G is trivial, a 1-cocyle Γ→ G
is just a continuous group morphism Γ→ G. Two 1-cocyles are cohomologous if and only
if they are conjugated by an element of G. In particular if M is a discrete Γ-module with
trivial Γ-action, then Z1(Γ,M) = H1(Γ,M) is the group of continuous group morphisms
Γ→M .

Let ξ : Γ→ G be a 1-cocyle. Let X be a discrete Γ-set with a compatible left G-action
(Definition 6.1.1), denoted by (g, x) 7→ g · x. For γ ∈ Γ and x ∈ X, we set

(6.4.b) γ ?ξ x = ξγ · (γx) ∈ X.
A straight-forward verification show that this defines a Γ-action on X. Any x ∈ X is
fixed by some open subgroup V ⊂ Γ (for the original action), and the 1-cocyle ξ factors
through the quotient map Γ → Γ/U for some open subgroup U ⊂ Γ by Lemma 4.2.14.
Then γ ?ξ x = x for all γ ∈ U ∩ V , which proves the Γ-action defined in (6.4.b) is
continuous.

Definition 6.4.4. The action defined in (6.4.b) is called the Γ-action twisted by the
1-cocyle ξ. The set X equipped with that action is a discrete Γ-set, that we denote by

ξX.

Now let a ∈ G, and consider the 1-cocycle ξ′ : Γ→ G defined by

ξ′γ = a−1 · ξγ · (γa) for γ ∈ Γ.

A straight-forward computation shows that the left action of a on X induces an isomor-
phism of discrete Γ-sets ξX → ξ′X. This shows that twisting the action by cohomologous
1-cocyles yields isomorphic discrete Γ-sets.

Remark 6.4.5. The above isomorphism depends on the choice of a (and not just on
the elements ξ, ξ′), hence we cannot define a discrete Γ-set ξX for ξ ∈ H1(Γ, G).

Proposition 6.4.6. Let G be a discrete Γ-group. The set H1(Γ, G) is naturally in
bijection with the set of isomorphism classes of G-torsors.

Proof. This follows from (i), (ii), (iii) in the more precise Lemma 6.4.7 below. �

Lemma 6.4.7. Let G be a discrete Γ-group. We view G as a discrete Γ-set, with the
left G-action given by the group operation in G. Then

(i) Let ξ : Γ→ G be a 1-cocyle. Then the group operation in G induces a right G-action
on ξG, and ξG is a G-torsor.

(ii) Every G-torsor is isomorphic to ξG for some 1-cocycle ξ : Γ→ G.
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(iii) Let ξ, ξ′ be 1-cocycles Γ → G. Then ξG ' ξ′G as G-torsors if and only if ξ and ξ′

are cohomologuous.
(iv) Let P be a G-torsor and p ∈ P . Then there is a unique map ξ : Γ → G such that

γp = p · ξγ for all γ ∈ Γ. The map ξ is a 1-cocycle such that P ' ξG as G-torsors.
(v) Let X be a discrete Γ-set with a compatible left G-action. Let ξ : Γ→ G be a 1-cocyle,

and P = ξG. Then PX ' ξX as discrete Γ-sets.

Proof. (i): We need to check that the G-action on itself given by right multiplication
is compatible with the twisted Γ-action. Indeed, for g, h ∈ G and γ ∈ Γ, we have

γ ?ξ (g · h) = ξγ · (γ(g · h)) = ξγ · (γg) · (γh) = (γ ?ξ g) · γ(h).

(iv): The first statement follows from the simple transitivity of the G-action on P .
If U is an open normal subgroup of Γ acting trivially on p, then ξ factors as Γ/U → G,
so that the map ξ is continuous by Lemma 4.2.14. For γ, τ ∈ Γ, we have

γτp = γ(p · ξτ ) = (γp) · (γξτ ) = p · ξγ · (γξτ ),

so that ξγτ = ξγ · (γξτ ), proving that ξ is 1-cocyle. The map ξG→ P given by g 7→ p · g
is G-equivariant for the right G-actions. It is also Γ-equivariant, since for any γ ∈ Γ and
g ∈ G, we have

p · (γ ?ξ g) = p · ξγ · (γg) = (γp) · (γg) = γ(p · g).

The map ξG→ P is thus a morphism of G-torsors, hence an isomorphism.
(ii): Since a torsor in nonempty by definition, this follows from (iv).

The proofs of (iii) and (v) will rely on the following computation. Let ξ : Γ→ G be a
1-cocyle, and ϕ : Gξ → P an isomorphism of G-torsors. Set p = ϕ(1) ∈ P . Since γ1 = 1
in G, we have in P

γp = γϕ(1) = ϕ(γ ?ξ 1) = ϕ(ξγ · (γ1)) = ϕ(ξγ · 1) = ϕ(1 · ξγ) = ϕ(1) · ξγ = p · ξγ .
(iii): One implication has already been observed just below Definition 6.4.4. For the

converse, set P = Gξ′ above. We obtain ξ′γ · (γp) = γ ?ξ′ p = p · ξγ , so that ξ and ξ′ are
cohomologous.

(v): We use the relation γp = p · ξγ obtained above. In view of (6.1.b) and (6.1.c),
we have, for any x ∈ X and γ ∈ Γ,

πp(γ ?ξ x) = πp(ξγ · (γx)) = πp·ξγ (γx) = πγp(γx) = γπp(x).

This proves that the map πp : X → PX induces a Γ-equivariant bijection ξX → PX. �

Definition 6.4.8. A pointed set is a set equipped with a distinguished element. We
will denote by {∗} the pointed set consisting of a single element. A morphism of pointed
sets is a map sending the distinguished element to the distinguished element. The image
of such a map is naturally a pointed set; the kernel of a morphism of pointed sets is the
preimage of the distinguished element. We say that a sequence of pointed sets

A0
f0−→ A1

f1−→ · · · fn−→ An

is exact if for each i = 1, . . . , n the kernel of fi coincides with the image of fi−1, as
subgroups of Ai.

When A is a discrete Γ-group, the set H1(Γ, A) is naturally pointed, the distinguished
element being given by the class of the 1-cocycle γ 7→ 1.
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Remark 6.4.9. Let A,B be discrete Γ-groups. Then the pointed set H1(Γ, A × B)
is naturally isomorphic to H1(Γ, A)×H1(Γ, B).

Composing 1-cocyles Γ→ A with a morphism of discrete Γ-groups f : A→ B yields
a morphism of pointed sets

f∗ : H1(Γ, A)→ H1(Γ, B).

If A and B are Γ-modules, then f∗ is a group morphism.

Proposition 6.4.10. Let B be a discrete Γ-group, and A ⊂ B a discrete Γ-subgroup.
Denote by C = B/A the quotient of B by action of A given by right multiplication. Then
C is a discrete Γ-set, and we have an exact sequence of pointed sets

{∗} → AΓ → BΓ → CΓ δ−→ H1(Γ, A)→ H1(Γ, B).

For c ∈ CΓ, the class δ(c) ∈ H1(Γ, A) is represented by the 1-cocyle sending γ ∈ Γ to
b−1(γb) ∈ A ⊂ B, where b ∈ B is any preimage of c. The preimage of c ∈ CΓ under the
map B → C is naturally an A-torsor, whose class in H1(Γ, A) is δ(c).

Proof. We explain only the last statement, the rest being straight-forward. Denote
by F ⊂ B the preimage of c. Then b ∈ F , and each element of F is of the form ba for
a unique a ∈ A, so that F is an A-torsor. It follows from Lemma 6.4.7 (iv) that the
corresponding element of H1(Γ, A) is δ(c). �

Corollary 6.4.11. In the situation of Proposition 6.4.10, the kernel of H1(Γ, A)→
H1(Γ, B) is isomorphic to the quotient of the pointed set CΓ by the left action of BΓ.

Proof. Let c, c′ ∈ CΓ, with preimages b, b′ ∈ B. We have δ(c) = δ(c′) if and only
if the 1-cocyles γ 7→ b−1(γb) and γ 7→ b′−1(γb′) are cohomologuous, which means that
there exists a ∈ A such that b′−1(γb′) = a−1b−1(γba) for all γ ∈ Γ, or equivalently
b′a−1b−1 ∈ BΓ. This is equivalent to the existence of β ∈ BΓ such that βc = c′ in
CΓ. �

Proposition 6.4.12. Any exact sequence of discrete Γ-groups

1→ A→ B → C → 1

induces an exact sequence of pointed sets

{∗} → AΓ → BΓ → CΓ δ−→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C).

The morphism of pointed sets δ is the one described in Proposition 6.4.10; it is a group
morphism if A is a discrete Γ-module.

Proof. This is clear. �

Corollary 6.4.13. Any exact sequence of discrete Γ-modules

1→ A→ B → C → 1

induces an exact sequence of groups

1→ AΓ → BΓ → CΓ δ−→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C).

The morphism δ is the one described in Proposition 6.4.10.
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We say that a k-group G acts on a k-set X if G(L) acts on X(L) for every separable
extension L/k, compatibly with the morphisms G(L) → G(L′) and X(L) → X(L′), for
every morphism L→ L′ in Sepk.

Definition 6.4.14. Let G be a k-group. A k-set X with an action of G is called a
G-torsor if for every separable closure F of k, the Gal(F/k)-set X(F ) is a G(F )-torsor. A
morphism of G-torsors is a morphism of functors between G-torsors which is compatible
with the G-actions. The set of isomorphism classes of G-torsors will be denoted by
H1(k,G).

Remark 6.4.15. Let X be a k-set with a G-action. If F, F ′ are separable closures
of k, there exists an isomorphism ϕ : F → F ′, which yields a bijection X(F ) → X(F ′)
compatible with the G(F )- and G(F ′)-actions. Therefore X is a G-torsor as soon as
X(ks) is a G(ks)-torsor for some separable closure ks/k. In this case, it follows from
Remark 6.2.2 and Proposition 6.4.6 that there is a canonical identification

H1(k,G) = H1(Gal(ks/k), G(ks)).

Definition 6.4.16. Let f : H → G be a morphism of k-groups. The kernel of f is
the k-subgroup ker f ⊂ G, defined by setting for every separable field extension L/k

(ker f)(L) = ker(H(L)→ G(L)).

Definition 6.4.17. When A,B,C are k-groups, an exact sequence

1→ A→ B → C → 1

is the data of morphisms of k-groups A → B and B → C such that for every separable
closure F of k, the sequence of groups

1→ A(F )→ B(F )→ C(F )→ 1

is exact.

Note that in the above situation the morphism B(k)→ C(k) need not be surjective.
In fact, by Proposition 6.4.12, there is an induced exact sequence of pointed sets

{∗} → A(k)→ B(k)→ C(k)→ H1(k,A)→ H1(k,B)→ H1(k,C).

Finally, we come back to the setting of §6.2, and note the following consequence of
Proposition 6.2.11 in terms of 1-cocyles:

Proposition 6.4.18. Let F/k be a Galois extension, and Γ = Gal(F/k). Isomor-
phism classes of F/k-twisted forms of (S, s) correspond to elements of H1(Γ,Aut(S, s)(F )).

If ξ : Γ → Aut(S, s)(F ) is a 1-cocyle, the corresponding (up to isomorphism) twisted
form (R, r) may be constructed by setting

R = {x ∈ SF |x = ξγ · (γx) for all γ ∈ Γ}

and r = sF ∈ T (R) ⊂ T (SF ).
Conversely let (R, r) be a twisted form of (S, s). Choose an isomorphism ϕ : SF →

RF such that T (ϕ)(sF ) = rF . A 1-cocyle corresponding to (R, r) is given by the map
Γ→ Aut(S, s)(F ) sending γ ∈ Γ to the composite

SF
idS ⊗γ−1

−−−−−−→ SF
ϕ−→ RF

idR⊗γ−−−−→ RF
ϕ−1

−−→ SF .
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Proof. The first statement follows from Proposition 6.4.6 and Proposition 6.2.11.
The explicit description of R follows from Lemma 6.4.7 (v), and the explicit description
of the 1-cocyle follows from Lemma 6.4.7 (iv) (in view of the formula (6.2.c)). �

Example 6.4.19. (Étales algebras.) The set of isomorphism classes of étale k-algebras
of dimension n is H1(k,Sn), where Sn is considered as a constant k-group. In view of
Remark 6.4.3, this is the set of continuous group morphisms Gal(ks/k) → Sn modulo
conjugation by elements of Sn.

Example 6.4.20. (Galois G-algebras.) Let G be a finite group, viewed as a constant
k-group. The set of isomorphism classes of Galois G-algebras is in bijection with H1(k,G).
Since Γ acts trivially on G, this is the set of continuous group morphisms Gal(ks/k)→ G
modulo conjugation by elements of G (Remark 6.4.3). In particular, if G is abelian, this
is the set of continuous group morphisms Gal(ks/k)→ G.
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Exercises

Exercise 6.1. Let Γ be a profinite group, and f : A→ B be a morphism of Γ-groups.
Composing 1-cocyles with f yields a map f∗ : H1(Γ, A)→ H1(Γ, B) . Describe this map
in terms of torsors.

Exercise 6.2. (i) Let V be a k-vector space of finite dimension n, and f : V ×V →
k be a k-bilinear form. We assume that f(x, x) = 0 for all x ∈ V (i.e. f is alternated)
and that the k-linear map V → Homk(V, k) sending x to the map y 7→ f(x, y) is
bijective (i.e. f is nondegenerate). Show that n is even, and that V admits a
k-basis e1, . . . , en such that f(e2r+1, e2r+2) = 1 and f(e2r+2, e2r+1) = −1 for all
0 ≤ r < n/2, and f(ei, ej) = 0 for all other values of i, j.

(ii) Let r ∈ N− 0 and consider the matrix (where blank entries are zero)

J =



0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0


∈M2r(k).

Show that letting, for every separable field extension L/k,

Sp2r(L) = {M ∈M2r(L)|M tJM = J},
whereM t denotes the transpose ofM , defines a k-group Sp2r such thatH1(k, Sp2r) =
{∗}.

Exercise 6.3. For every separable extension L/k denote by L[X] the polynomial
algebra in one variable over L, and set

G(L) = AutL−alg(L[X]).

Extension of scalars yields a map G(L)→ G(L′) for every morphism L→ L′ of separable
extensions of k.

(i) Show that G defines a k-group.
(ii) Show that every element of G(L) is of the form X 7→ aX + b, where a ∈ L× and

b ∈ L.
(iii) Show that we have an exact sequence of k-groups

1→ Ga → G→ Gm → 1.

(iv) Show that H1(k,G) = {∗}.
(v) Let A be a k-algebra such that AL ' L[X] as L-algebra, for some separable extension

L/k. Show that A ' k[X] as k-algebra.

We have thus proved that the k-algebra k[X] admits no nontrivial twisted forms. We
now give an example a nontrivial “inseparable twisted form” of k[X], that is a k-algebra
B such that B 6' k[X] and BK ' K[X] for some nonseparable extension K/k.

Let us assume that k has positive characteristic p, and that a ∈ k is such that a 6= bp

for all b ∈ k. We consider the k-algebra B = k[U, V ]/(Up − aV p − V ).
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(vi) Show that there exists an algebraic field extension K/k such that BK ' K[X] as
K-algebra.

(vii) Show that B is not isomorphic to k[X] as k-algebra.
(viii) For every prime p, give an example of a field k of characteristic p, together with an

element a ∈ k such that a 6= bp for all b ∈ k.
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CHAPTER 7

Applications of torsors theory

In this chapter, we apply the theory of twisted forms that we have just presented.
The simplest applications are the classical Kummer and Artin–Schreier theories, which
describe torsors under cyclic groups (in the presence of enough roots of unity in the base
field), that is, Galois algebras under those groups. These theories are consequences of the
so-called Hilbert’s Theorem 90 (and its additive counterpart), a central result which is
the basis of many computations of Galois cohomology sets.

The rest of the chapter concerns central simple algebras. As we have seen, such
algebras of degree n correspond to torsors under the group PGLn. Thus algebras of
different degrees have classes in the first cohomology set of different groups. We first
briefly explain how to relate these cohomology sets in order to understand the tensor
product of central simple algebras in terms of 1-cocyles.

The next application concerns the so-called cyclic algebras. Those algebras may be
thought of as higher degrees generalisations of quaternion algebras, and provide a concrete
way of constructing central simple algebras. This section culminates with a computation
of the relative Brauer group of a cyclic Galois extension.

The last application is a construction of the reduced norm and trace, which are twisted
versions of the determinant and trace of matrices. The reduced norm may be thought
of as a higher degree generalisation of the quaternion norm. We relate the image of the
reduced norm to the images of the norms of splitting fields of finite degrees.

1. Kummer theory

Let V be a finite-dimensional k-vector space. Recall from Example 6.3.1 that GL(V )
denotes the k-group defined by GL(V )(L) = AutL(VL) for any separable field extension
L/k.

Proposition 7.1.1 (Hilbert’s Theorem 90). For any Galois field extension F/k, we
have H1(Gal(F/k),GL(V )(F )) = {∗}. In particular H1(k,GL(V )) = {∗}.

Proof. This follows at once from Proposition 6.4.18, since all twisted forms of the
k-vector space V have the same dimension, hence are isomorphic. �

The above statement is in fact due to Speiser. The following consequence is the
original form of Hilbert’s Theorem 90.

Corollary 7.1.2. Let L/k be a Galois field extension of finite degree such that
Gal(L/k) is cyclic generated by σ. Let α ∈ L. Then NL/k(α) = 1 if and only if α =

(σβ)β−1 for some β ∈ L.

Proof. Let n = [L : k]. Recall that, by Proposition 5.5.14,

NL/k(α) = α(σα) · · · (σn−1α).
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Certainly NL/k((σβ)β−1) = 1 for all β ∈ L. Conversely, assume that NL/k(α) = 1. Then
the map

ξ : Gal(L/k)→ L× ; σi 7→ α(σα) · · · (σi−1α)

is a 1-cocyle. By Hilbert’s Theorem 90 (Proposition 7.1.1), this 1-cocyle is cohomologous
to the trivial 1-cocyle. This yields an element β ∈ L× such that ξσi = (σiβ)β−1 for all i,
and the statement follows by taking i = 1. �

Definition 7.1.3. Let n ∈ N−{0}. We denote by µn the kernel of the morphism of
k-groups Gm → Gm given by x 7→ xn. Thus µn is a k-group such that, for any separable
field extension L/k, we have

µn(L) = {x ∈ L×|xn = 1}.

Lemma 7.1.4. Assume that n is not divisible by the characteristic of k. Then we have
an exact sequence of k-groups

1→ µn → Gm
x 7→xn−−−−→ Gm → 1.

Proof. We only need to prove surjectivity of the last morphism. If a ∈ k×s , then
the polynomial Xn− a is separable (its derivative nXn−1 is nonzero by the assumption),
hence has a root in b ∈ k×s . The element b is the required preimage of a. �

Proposition 7.1.5 (Kummer’s theory). Assume that n is not divisible by the char-
acteristic of k. Then there is a natural group isomorphism

k×/k×n ' H1(k, µn),

mapping a ∈ k× to the class of the 1-cocyle γ 7→ (γα)α−1, where α ∈ ks is any element
such that αn = a.

Every µn(ks)-torsor is isomorphic to {x ∈ ks|xn = a}, where ω ∈ µn(ks) acts by
x 7→ ωx, for a uniquely determined element a ∈ k×/k×n.

Proof. By Proposition 6.4.12, the exact sequence of k-groups of Lemma 7.1.4 yields
an exact sequence of groups (Corollary 6.4.13)

1→ µn(k)→ k×
x7→xn−−−−→ k×

δ−→ H1(k, µn)→ H1(k,Gm).

The group on the right is trivial by Hilbert’s Theorem 90 (Proposition 7.1.1), so the
required isomorphism is induced by δ. The remaining statements follow from the explicit
descriptions of δ provided in Proposition 6.4.10. �

Corollary 7.1.6. Assume that k contains a root of unity ω of order n. Then

H1(k,Z/n) ' k×/k×n.

The class of an element a ∈ k× corresponds to the isomorphism class of the Galois Z/n-
algebra Ra = k[X]/(Xn − a), with the action of i ∈ Z/n given by X 7→ ωiX.

Proof. The assumption implies that n is not divisible by the characteristic of k, and
yields an isomorphism of Gal(ks/k)-groups Z/n→ µn(ks) given by i 7→ ωi. Sending f ∈
X(Ra) to f(X) ∈ ks induces an isomorphism of Z/n-torsors X(Ra) ' {x ∈ ks|xn = a},
where i ∈ Z/n acts by x 7→ ωix. Since dimk Ra = n, this implies that Ra is the Galois
Z/n-algebra (unique up to isomorphism) corresponding to the µn(ks)-torsor {x ∈ ks|xn =
a}, where ω acts by x 7→ ωx. Thus the statement follows from Proposition 7.1.5. �
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2. Artin–Schreier theory

Proposition 7.1.1 has the following “additive” counterpart. The proof given here relies
in the interpretation of H1(k,Ga) as the set of isomorphisms classes of twisted forms of
a particular object. A different, purely cohomological proof will be given later.

Proposition 7.2.1. We have H1(k,Ga) = {∗}.

Proof. For a vector space V over a field K, we set

T (V ) = V ⊕HomK(V,K).

Consider the k-vector space S = k2. The element s = (1, 0) ∈ S and the map σ ∈
Homk(S, k) given by σ(x, y) = y for all x, y ∈ k define an element (s, σ) ∈ T (S). We
will abuse the notation and denote the pair (S, (s, σ)) by (S, s, σ). Let F/k be a Galois
extension and Γ = Gal(F/k). Any element ϕ ∈ Aut(S, s, σ)(F ) is given by a matrix(

aϕ bϕ
cϕ dϕ

)
∈M2(F ).

The condition ϕ(sF ) = sF means that aϕ = 1 and cϕ = 0. The condition σF ◦ ϕ = σF
means that dϕ = 1 and cϕ = 0. The remaining coefficient bϕ may be freely chosen in F
(observe that the matrix will always be invertible), and we have, for any x, y ∈ F ,

ϕ(x, y) = (x+ bϕy, y).

If ψ is another automorphism of (SF , sF , σF ), we have bϕ◦ψ = bϕ + bψ. This proves that
Aut(S, s, σ)(F ) is the group F . Moreover if γ ∈ Gal(F/k), and ψ = (id⊗γ)◦ϕ◦(id⊗γ−1),
we have for any x, y ∈ F
ψ(x, y) = (id⊗γ) ◦ ϕ(γ−1x, γ−1y) = (id⊗γ)(γ−1x+ bϕγ

−1y, γ−1y) = (x+ (γbϕ)y, y),

so that bψ = γbϕ. We have proved that the discrete Γ-group Aut(S, s, σ)(F ) is isomorphic
to Ga(F ).

Let now (R, r, ρ) be a twisted forms of (S, s, σ) over k. Note that the elements r
and ρ are nonzero, since they are so after extending scalars to F . Also ρ(r) = 0, since
σ(s) = 0. Let e ∈ R be such that ρ(e) = 1, and f ∈ S such that σ(f) = 1. Then the
family (r, e), resp. (s, f), is a k-basis of R, resp. S. The k-linear map S → R given by
s 7→ r and f 7→ e is then an isomorphism of twisted forms (S, s, σ) → (R, r, ρ). We have
proved that all twisted forms of (S, s, σ) are isomorphic. Therefore by Proposition 6.4.18
we have

H1(Gal(ks/k),Aut(S, s, σ)(ks)) = H1(k,Ga) = {∗}. �

Lemma 7.2.2. If k has characteristic p > 0, we have an exact sequence of k-groups

1→ Z/p→ Ga
℘−→ Ga → 1,

where, for every separable field extension L/k,

℘ : L→ L ; x 7→ xp − x.

Proof. Note that ℘ defines a morphism of k-groups, and that ker℘ : L→ L coincides
with the prime field Fp ⊂ L for every separable field extension L/k. Thus ker℘ is
isomorphic to the constant group Z/p. The morphism ℘ : ks → ks is surjective because
for any a ∈ ks the polynomial Xp − X − a ∈ ks[X] is separable (its derivative is the
constant nonzero polynomial −1), so that if b ∈ ks is a root of that polynomial, we have
℘(b) = a. �
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Proposition 7.2.3 (Artin–Schreier’s theory). Assume that k has characteristic p >
0. Then there is a natural group isomorphism

k/℘(k) ' H1(k,Z/p),
mapping a ∈ k to the class of the 1-cocyle γ 7→ γα−α, where α ∈ ks is any element such
that αp − α = a.

Every Z/p-torsor is isomorphic to {x ∈ ks|xp − x = a}, where i ∈ Z/p acts by
x 7→ x+ i, for a uniquely determined a ∈ k/℘(k).

Proof. By Proposition 6.4.12, the exact sequence of k-groups of Lemma 7.2.2 yields
an exact sequence of groups (Corollary 6.4.13)

1→ Z/p→ k
℘−→ k

δ−→ H1(k,Z/p)→ H1(k,Ga).

The group on the right is trivial by Proposition 7.2.1, so the required isomorphism is
induced by δ. The remaining statements follow from the explicit descriptions of δ provided
in Proposition 6.4.10. �

Corollary 7.2.4. Assume that k has characteristic p > 0. Every Galois Z/p-algebra
is isomorphic to Ta = k[X]/(Xp −X − a) for a uniquely determined a ∈ k/℘(k), where
the action of i ∈ Z/p given by X 7→ X + i.

Proof. Sending f ∈ X(Ta) to f(X) ∈ ks induces an isomorphism of Z/p-torsors
X(Ta) ' {x ∈ ks|xp − x = a}, where i ∈ Z/p acts by x 7→ x+ i. Since dimk Ta = p, this
implies that Ta is the Galois Z/p-algebra (unique up to isomorphism) corresponding to the
Z/p-torsor {x ∈ ks|xp − x = a}. Thus the statement follows from Proposition 7.2.3. �

3. Tensor product and 1-cocyles

In this short section, we explain how the tensor product of central simple algebras
can be expressed in terms of 1-cocycles.

Let n ∈ N and L/k be a separable extension. Recall that we have defined PGLn(L) =
AutL−alg(Mn(L)). Since every automorphism of Mn(L) is inner by Skolem–Noether’s
Theorem 2.3.3, and the center of Mn(L) is L, we have an exact sequence of groups

(7.3.a) 1→ L× → GLn(L)→ PGLn(L)→ 1,

where the map GLn(L) → PGLn(L) sends an invertible matrix A to the automorphism
of Mn(L) given by M 7→ AMA−1. This yields an exact sequence of k-groups

(7.3.b) 1→ Gm → GLn → PGLn → 1.

Let m,n ∈ N − 0 and consider the k-vector spaces V = kn and W = km. For any
separable extension L/k, we may define a group morphism

GL(V )(L)×GL(W )(L)→ GL(V ⊗k W )(L) ; (ϕ,ψ) 7→ ϕ⊗ ψ.
This yields a morphism of k-groups GLm×GLn → GLmn fitting into a commutative
diagram of k-groups, having exact rows

(7.3.c)

1 // Gm ×Gm //

��

GLm×GLn //

��

PGLm×PGLn

��

// 1

1 // Gm // GLmn // PGLmn // 1
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where the vertical map on the left is the group operation in Gm.
Let us denote by [A] ∈ H1(k,PGLn) the class of a finite-dimensional central simple

k-algebra of degree n.

Proposition 7.3.1. Let A,B be a finite-dimensional central simple k-algebras, and
m = deg(A), n = deg(B). Then ([A], [B]) is mapped to [A⊗k B] under the composite

H1(k,PGLm)×H1(k,PGLn)→ H1(k,PGLm×PGLn)→ H1(k,PGLmn).

Proof. We use the explicit description given at the end of Proposition 6.4.18: if
ϕ : Mm(ks) → Aks is any isomorphism of ks-algebras, the class [A] ∈ H1(k,PGLm) is
represented by the 1-cocyle

α : Gal(ks/k)→ Autks−alg(Mm(ks)) ; γ 7→ αγ = ϕ−1 ◦ γ ◦ ϕ ◦ γ−1.

Similarly if ψ : Mn(ks)→ Aks is any isomorphism of ks-algebras, the class [B] ∈ H1(k,PGLn)
is represented by the 1-cocyle βγ = ψ−1 ◦ γ ◦ ψ ◦ γ−1. The image of ([A], [B]) in
H1(k,PGLmn) under the composite of the statement is thus represented by 1-cocyle
αγ ⊗ βγ . Now, the isomorphisms ϕ and ψ induce an isomorphism of ks-algebras

Mmn(ks) = Mm(ks)⊗ks Mn(ks)
ϕ⊗ψ−−−→ Aks ⊗ks Bks = (A⊗k B)ks ,

so that the [A ⊗k B] ∈ H1(k,PGLmn) is represented by the 1-cocycle πγ = (ϕ ⊗ ψ)−1 ◦
γ ◦ (ϕ⊗ ψ) ◦ γ−1. Since πγ = αγ ⊗ βγ for all γ ∈ Gal(ks/k), the statement follows. �

4. Cyclic algebras

We are now in position to define and study higher-dimensional analogs of quaternion
algebras, called cyclic algebras.

Let n ∈ N− 0. When L is a Galois Z/n-algebra over k, we will denote by ρ : L→ L
the action of 1 ∈ Z/n.

Definition 7.4.1. Let L be a Galois Z/n-algebra over k, and a ∈ k×. We define the
k-algebra

(L, a) =

n−1⊕
i=0

Lzi

where the element z, that we call the standard element, is subject to the relations

zn = a and zl = ρ(l)z for all l ∈ L.
Algebras of the form (L, a) for L and a as above are called cyclic algebras.

Observe that dimk(L, a) = n2, and that if K/k is a field extension we have (LK , a) '
(L, a)K .

Lemma 7.4.2. Let A be a k-algebra containing L as a subalgebra and α ∈ A such that

αn = a and αl = ρ(l)α for all l ∈ L.
Then there exists a unique morphism of k-algebras (L, a) → A mapping z to α, whose
restriction on L is the inclusion L ⊂ A.

Proof. This is clear from the definition of (L, a). �

The next statement asserts that the isomorphism class of the k-algebra (L, a) depends
only on the class of a in k×/k×n:
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Lemma 7.4.3. Let L be a Galois Z/n-algebra over k and a ∈ k×. For any b ∈ k×,
we have (L, a) ' (L, abn) as k-algebras.

Proof. Let z, resp. y, be the standard element of (L, a), resp. (L, abn). In view of
Lemma 7.4.2, we may define mutually inverse isomorphisms (L, a) ' (L, abn) by z 7→ b−1y
and y 7→ bz. �

For a ∈ k×, consider the matrix (blank entries are zero)

Za =


0 · · · 0 a
1 0

. . .
...

1 0

 ∈Mn(k).

Using the notation diag for the diagonal matrices, observe that

(7.4.a) (Za)n = diag(a, . . . , a)

and that, if x1, . . . , xn ∈ k, then

(7.4.b) Za · diag(x1, . . . , xn) · Z−1
a = diag(xn, x1, . . . , xn−1).

Proposition 7.4.4. Let L be a Galois Z/n-algebra over k and a ∈ k×.

(i) The k-algebra (L, a) is central and simple.
(ii) If the Galois Z/n-algebra L is split, then (L, a) 'Mn(k).

(iii) If a ∈ k×n, then (L, a) 'Mn(k).
(iv) Let Γ = Gal(ks/k) and λ : Γ → Z/n be a 1-cocyle whose class in H1(Γ,Z/n) is the

class of the Galois Z/n-algebra L. Then the class of the finite-dimensional central
simple k-algebra (L, a) in H1(Γ,PGLn(ks)) is given by the 1-cocycle za ◦ λ, where
za : Z/n→ PGLn(ks) is the group morphism mapping 1 ∈ Z/n to the automorphism
of Mn(ks) given by M 7→ ZaMZ−1

a .

Proof. Consider the k-algebra B = kn with the Z/n-action given by

ρ(x1, . . . , xn) = (xn, x1, . . . , xn−1) for x1, . . . , xn ∈ k.
Then B is a split Galois Z/n-algebra. By Lemma 7.4.2, in view of (7.4.b) and (7.4.a) we
may define a morphism of k-algebras ϕ : (B, a)→Mn(k) by

(x1, . . . , xn) ∈ L 7→ diag(x1, . . . , xn) and z 7→ Za.

Let j ∈ {1, . . . , n} and uj = (δ1,j , . . . , δn,j) ∈ B (where δi,j is the Kronecker delta). For
i ∈ {1, . . . , n}, we have

ϕ(ujz
i) =

{
ej,j−i if j > i,

aej,n+j−i if j ≤ i,
where eu,v denotes the matrix in Mn(k) whose only nonzero entry is in position (u, v)
and has value 1. It follows that ϕ is surjective, hence bijective by dimensional reasons.
We have proved that the k-algebra (B, a) is isomorphic to Mn(k).

(ii): Since all split Galois Z/n-algebras are isomorphic to one another, this follows
from the above observation.

(i): This follows from (ii) by extending scalars to ks (in view of Lemma 3.1.1).
(iii): Sending l ∈ L to the endomorphism of L given by x 7→ lx induces a morphism

of k-algebras τ : L → Endk(L). This morphism is injective, since τ(l)(1) = l. We may
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thus view L as a subalgebra of Endk(L). We may apply Lemma 7.4.2 with A = Endk(L)
and α = ρ, since αn = ρn = id, and for any l ∈ L

α ◦ τ(l)(x) = ρ(lx) = ρ(l)ρ(x) = τ(ρ(l)) ◦ α(x) for all x ∈ L,

so that α ◦ (τ(l)) = τ(ρ(l)) ◦ α. We obtain a morphism of k-algebras (L, 1) → Endk(L),
which is injective by simplicity of (L, 1) (obtained in (i)), and bijective by dimensional
reasons. We conclude using Lemma 7.4.3, and choosing an isomorphism Endk(L) '
Mn(k) (corresponding to a k-basis of L).

(iv): Upon replacing L with an isomorphic Galois Z/n-algebra, we may assume that
Lks = Bks as ks-algebras, with the Γ-action given by twisting the action on Bks by the
1-cocyle λ. Consider the isomorphism of ks-algebras

φ : (Bks , a) = (B, a)ks
ϕks−−→Mn(ks).

Let γ ∈ Γ. Then γ acts trivially on z ∈ (B, a) ⊂ (B, a)ks and on φ(z) = Za ∈ Mn(k) ⊂
Mn(ks). Moreover ξγ(M) = Z

λγ
a ·M · Z−λγa for every M ∈ Mn(ks). Therefore, twisting

the Γ-action on Mn(ks) by the 1-cocyle ξ = za ◦ λ : Γ→ PGLn(ks), we have

γ ?ξ φ(z) = Zλγa · (γφ(z)) · Z−λγa = Zλγa · Za · Z−λγa = Za = φ(z) = φ(γz).

If x = (x1, . . . , xn) ∈ Bks = (ks)
n, we have for any γ ∈ Γ

γ ?λ x = ρλγ (γx1, . . . , γxn) = ρλγ (γx).

We also have φ(γx) = γφ(x), and, in view of (7.4.b)

γ ?ξ φ(x) = Zλγa · (φ(γx)) · Z−λγa = φ(ρλγ (γx)) = φ(γ ?λ x).

We have proved that the composite

(L, a)ks = (Lks , a) = (Bks , a)
φ−→ ξMn(ks)

is Γ-equivariant, hence induces an isomorphism of k-algebras (L, a) ' (ξ(Mn(ks)))
Γ, as

required. �

Remark 7.4.5. If ω ∈ k× is a root of unity of order n, then Galois Z/n-algebras
are classified by elements of k×/k×n by Corollary 7.1.6, hence we may associate a cyclic
algebra to each pair (a, b) ∈ (k×/k×n)2 (which depends on the choice of ω). When n = 2
and k has characteristic different from two (thus ω = −1), this is of course the quaternion
algebra (a, b) of Definition 1.1.1. This suggests how to define quaternion algebras when k
has characteristic two: in this case Artin–Schreier theory (Proposition 7.2.3) asserts that
Galois Z/2-algebras are classified by k/℘(k), so that one may associate a cyclic algebra
of degree 2 to each pair in (k/℘(k))× (k×/k×2).

Proposition 7.4.6. Let K be a Galois Z/m-algebra over k, and r ∈ N − 0. Set

n = rm, and consider the Galois Z/n-algebra L = Ind
Z/n
Z/m(K) over k (see Lemma 5.5.17).

Then for any a ∈ k×

(L, a) 'Mr(A) where A = (K, a).

Proof. Recall that L is the k-algebra of those maps f : Z/n→ K such that f(i+r) =
τ(f(i)), where τ : K → K is the action of 1 ∈ Z/m. We define a morphism of k-algebras
L → Mr(A) by sending a map f ∈ L to the matrix diag(f(0), . . . , f(1 − r)). This
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morphism is visibly injective. Letting z ∈ A = (K, a) be the standard element, we
consider the matrix (blank entries are zero)

Z =


0 · · · 0 z
1 0

. . .
...

1 0

 ∈Mr(A).

Then Zr = diag(z, . . . , z) ∈Mr(A) coincides with z ∈ A ⊂Mr(A), hence Zn = Zrm = a.
Now for x0, . . . , xr−1 ∈ A, we have

Z · diag(x0, . . . , xr−1) = diag(τ(xr−1), x0, . . . , xr−2) · Z.

The image of f ∈ L under the action of 1 ∈ Z/n is the map g ∈ L given by g(i) = f(i+1)
for i ∈ Z/n. Setting xi = f(−i) for i = 0, . . . , r− 1, and noting that τ(f(1− r)) = f(1) =
g(0)

Z · diag(f(0), . . . , f(r − 1)) = diag(g(0), . . . , g(1− r)) · Z.
Therefore by Lemma 7.4.2 there exists a morphism of k-algebras (L, a)→Mr(A) sending
the standard element to Z, and restricting to f 7→ diag(f(0), . . . , f(1 − r)) on L. This
morphism is injective (as (L, a) is simple and Mr(A) is nonzero), hence bijective by
dimensional reasons. �

Lemma 7.4.7. Let a, b ∈ k×. Then there exists an invertible element U ∈ Mn(k)⊗k
Mn(k) such that

Za ⊗ Zb = U−1(Z1 ⊗ Zab)U ∈Mn(k)⊗kMn(k).

Proof. Let e1, . . . , en be a k-basis of V = kn. Letting U correspond to the endo-
morphism of V ⊗k V given by

ei ⊗ ej 7→

{
ei ⊗ ej if i ≥ j,
a−1ei ⊗ ej if i < j,

one verifies that Za ⊗ Zb and U−1(Z1 ⊗ Zab)U both correspond to the endomorphism of
V ⊗k V given by

ei ⊗ ej 7→


ei+1 ⊗ ej+1 if i < n and j < n,

ae1 ⊗ ej+1 if j < i = n,

bei+1 ⊗ e1 if i < j = n,

abe1 ⊗ e1 if i = j = n.

�

Proposition 7.4.8. Let L be a Galois Z/n-algebra over k and a, b ∈ k×. Then

(L, a)⊗k (L, b) 'Mn(k)⊗k (L, ab).

Proof. As usual, we identify Mn(k) ⊗k Mn(k) with Mn2(k), which yields a group
morphism

PGLn(ks)× PGLn(ks)→ PGLn2(ks) ; (f, g) 7→ f ⊗ g.
Let U ∈Mn2(k) be as in Lemma 7.4.7, and u ∈ PGLn2(k) ⊂ PGLn2(ks) be the automor-
phism given by M 7→ U−1MU . Then for every M ∈Mn2(k) and i ∈ Z/n,

(Z1 ⊗ Zab)iM(Z1 ⊗ Zab)−i = U(Za ⊗ Zb)iU−1MU(Za ⊗ Zb)−iU−1.
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We now apply Proposition 7.4.4 and use its notation. The above formula implies that,
for all i ∈ Z/n, we have in PGLn2(ks)

(7.4.c) (z1 ⊗ zab)(i) = u−1 · (za(i)⊗ zb(i)) · u.
Since U is defined over k, the automorphism u is Γ-invariant, so that (7.4.c) shows that
the 1-cocyles (za ⊗ zb) ◦ λ and (z1 ⊗ zab) ◦ λ in Z1(Γ,PGLn2(ks)) are cohomologous,
hence represent isomorphic k-algebras. Since (L, 1) 'Mn(k) (Proposition 7.4.4 (iii)), the
statement follows from Proposition 7.3.1. �

Remark 7.4.9. It follows from Proposition 7.4.8 and Proposition 7.4.4 (iii) that the
finite-dimensional central simple algebra (L, a)⊗n splits.

Lemma 7.4.10. Let L be a Galois Z/n-algebra and a ∈ k×. Assume that L is a
field. Consider the cyclic algebra (L, a) and its standard element z ∈ (L, a). Let i ∈
{0, . . . , n − 1}. Any element x ∈ (L, a) such that ρi(l)x = xl for all l ∈ L is of the form
uzi for some u ∈ L.

Proof. Write x = x0 + x1z + · · · + xn−1z
n−1 with xj ∈ L for all j = 0, . . . , n − 1.

The condition ρi(l)x = xl implies that

n−1∑
j=0

ρi(l)xjz
j =

n−1∑
j=0

xjz
j l =

n−1∑
j=0

xjρ
j(l)zj =

n−1∑
j=0

ρj(l)xjz
j ,

so that ρi(l)xj = ρj(l)xj for all j = 0, . . . , n − 1. Let j ∈ {0, . . . , n − 1} be such that
xj 6= 0. Then xj ∈ L×, and thus ρi(l) = ρj(l) for all l ∈ L. Therefore ρi−j = idL, which
implies that i = j in view of Lemma 5.5.6. �

Proposition 7.4.11. Let L be a Galois Z/n-algebra over k and a, b ∈ k×. Then the
k-algebras (L, a) and (L, b) are isomorphic if and only if ab−1 ∈ NL/k(L×).

Proof. By Proposition 5.5.18, Proposition 7.4.6 and Lemma 5.5.19 we may assume
that L is a field (recall that Brauer-equivalent central simple k-algebras of the same
finite dimension are isomorphic, by Wedderburn’s Theorem 2.1.13). Let y and z be the
respective standard elements of (L, a) and (L, b). For any u ∈ L, we have (uz)n =
uρ(u) · · · ρn−1(u)zn, so that by Proposition 5.5.14

(7.4.d) (uz)n = bNL/k(u).

Now assume that u ∈ L× is such that a = bNL/k(u). Then (uz)n = a by (7.4.d), so
that by Lemma 7.4.2 we may define a morphism of k-algebras ϕ : (L, a)→ (L, b) satisfying
ϕ(y) = uz and ϕ(l) = l for all l ∈ L. This morphism is injective by simplicity of (L, a),
and an isomorphism by dimensional reasons.

Conversely, assume given an isomorphism of k-algebras ϕ : (L, a)→ (L, b). The ring
L is simple by Remark 2.1.6. Applying Skolem–Noether’s Theorem 2.3.3 to the inclusion

L ⊂ (L, b) and the composite L ⊂ (L, a)
ϕ−→ (L, b) we obtain an element v ∈ (L, b) such

that vϕ(l)v−1 = l for all l ∈ L. Replacing ϕ by the isomorphism x 7→ vϕ(x)v−1, we may
assume that ϕ(l) = l for all l ∈ L. Then for all l ∈ L

ϕ(y)l = ϕ(yl) = ϕ(ρ(l)y) = ρ(l)ϕ(y),

so that by Lemma 7.4.10 (with i = 1) we have ϕ(y) = uz for some u ∈ L. Then, by
(7.4.d),

a = ϕ(yn) = ϕ(y)n = (uz)n = bNL/k(u). �
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Proposition 7.4.12. Let L be a Galois Z/n-algebra over k and A a finite-dimensional
central simple k-algebra of degree n containing L as a subalgebra. Assume that L is a
field. Then there exists a ∈ k× such that A ' (L, a).

Proof. The ring L being simple (Remark 2.1.6), by Skolem–Noether’s Theorem 2.3.3

applied the morphisms L ⊂ A and L
ρ−→ L ⊂ A, we find α ∈ A× such that αlα−1 = ρ(l)

for all l ∈ L. Let a = αn. Then a ∈ ZA(L) (as ρn = idL). Since L = ZA(L) by
Lemma 3.2.4, it follows that a ∈ L. We have

ρ(a) = α−1aα = α−1αnα = αn = a,

hence a ∈ LZ/n = k. By Lemma 7.4.2, we may define a morphism of k-algebras
ϕ : (L, a) → A satisfying ϕ(z) = α and ϕ(l) = l for l ∈ L. This morphism is injec-
tive by simplicity of (L, a), and bijective by dimensional reasons. �

Theorem 7.4.13. Let L be a Galois Z/n-algebra. Assume that L is a field. Then
mapping a ∈ k× to the cyclic algebra (L, a) yields a group isomorphism

k×/NL/k(L×) ' Br(L/k).

Proof. Mapping a to (L, a) induces a group morphism k× → Br(k) by Proposi-
tion 7.4.8. The image of this morphism is contained in Br(L/k) by Corollary 5.5.13 and
Proposition 7.4.4 (ii). This morphism induces an injective morphism k×/NL/k(L×) →
Br(L/k) by Proposition 7.4.11. Its surjectivity is obtained by combining Proposition 3.2.2
with Proposition 7.4.12. �

Corollary 7.4.14. If L/k is a finite Galois extension such that Gal(L/k) is cyclic,
then

Br(L/k) ' k×/NL/k(L×).

Proof. Choosing a generator of Gal(L/k) makes L a Galois Z/n-algebra over k,
where n = [L : k] (Example 5.5.7), and we may apply Theorem 7.4.13. �

5. The reduced characteristic polynomial

When L is a field and n an integer, we denote by

χL : Mn(L)→ L[X] ; M 7→ det(XIn −M)

the map sending a matrix to its characteristic polynomial (where In ∈Mn(k) is the unit
matrix). Observe that, for any field extension E/L the following diagram commutes

(7.5.a)

Mn(L)
χL //

��

L

��
Mn(E)

χE // E

Definition 7.5.1. Let A be a k-algebra, and M an A-module of finite dimension
over k. The characteristic polynomial of an element a ∈ A is the polynomial

CpM/k(a) = det(X idM −la) ∈ k[X],

where la : M →M is the map given by x 7→ ax (viewed as a k-linear map).
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Observe that if f : M → N is an isomorphism of A-modules, then la = f ◦ la ◦ f−1

for any a ∈ A, so that

(7.5.b) CpM/k(a) = CpN/k(a).

If M,N are A-modules of finite dimensions over k, then for any a ∈ A

(7.5.c) CpM⊕N/k(a) = CpM/k(a) CpN/k(a).

Finally, if ϕ : B → A is a morphism of k-algebras, and M an A-module of finite dimension
over k, we may view M as a B-module using ϕ, and we have lb = lϕ(b) for any b ∈ B, so
that

(7.5.d) CpM/k(b) = CpM/k(ϕ(b)).

Lemma 7.5.2. For any M ∈Mn(k), we have χk(M)n = CpMn(k)/k(M).

Proof. For 1 ≤ i, j ≤ n, let us set xi+(n−1)j = ei,j ∈ Mn(k) (the matrix whose
only nonzero entry is 1, in the position (i, j)). The elements x1, . . . , xn2 form a k-basis of
Mn(k). If M ∈Mn(k) has coefficients mi,j ∈ k, we have

Mxk+(n−1)l = Mek,l =

n∑
i,j=1

mi,jei,jek,l =

n∑
i=1

mi,kei,l =

n∑
i=1

mi,kxi+(n−1)l,

showing that, in the basis x1, . . . , xn2 , the matrix of the map Mn(k) → Mn(k) given by
x 7→Mx is 

M 0 · · · 0
0 M · · · 0
· · · · · · · · · · · ·
0 · · · 0 M

 .

Its characteristic polynomial is χk(M)n. �

Lemma 7.5.3. Let A be a finite-dimensional simple k-algebra. If f, g : A → Mn(k)
are morphisms of k-algebras, then χk ◦ f = χk ◦ g : A→ k[X].

Proof. By Skolem–Noether’s Theorem 2.3.3 there exists b ∈Mn(k) such that f(a) =
b−1g(a)b for all a ∈ A, so that the matrices f(a) and g(a) have the same characteristic
polynomial. �

Lemma 7.5.4. Let A be a finite-dimensional central simple k-algebra, and F/k a
Galois extension. Let f : AF →Mn(F ) be a morphism of F -algebras. Then the composite

A→ AF
f−→Mn(F )

χF−−→ F [X]

has image contained in k[X].

Proof. Let Γ = Gal(F/k). In view of the diagram (7.5.a) when E = L and γ ∈ Γ,
the map χF : Mn(F ) → F is Γ-equivariant. If γ ∈ Γ, the map g : AF → Mn(F ) given
by x 7→ γ−1f(γx) is a morphism of F -algebras, hence by Lemma 7.5.3 we have for any
x ∈ AF ,

χF ◦ f(x) = χF ◦ g(x) = χF (γ−1f(γx)) = γ−1(χF ◦ f(γx)).

Thus the morphism χF ◦ f is Γ-equivariant, hence maps A = (AF )Γ to k[X] = (F [X])Γ

(see Lemma 4.4.3). �
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Let now A be a finite-dimensional central simple k-algebra of degree n. Choose a
Galois extension F/k and a morphism of F -algebras f : AF → Mn(F ) (this is possible,
since Aks 'Mn(ks)). Let a ∈ A. The polynomial χF ◦ f(a⊗ 1) ∈ F [X] belongs to k[X]
by Lemma 7.5.4. Let now F ′/k be a Galois extension and f ′ : AF ′ →Mn(F ′) a morphism
of F ′-algebras. Let E be a separable closure of F ′. Then F can be embedded into E by
Lemma 4.3.12, and using Lemma 7.5.3 and the commutativity of the diagram (7.5.a), we
have in k[X] ⊂ E[X]

χF ◦ f(a⊗ 1) = χE ◦ fE(a⊗ 1) = χE ◦ f ′E(a⊗ 1) = χF ′ ◦ f ′(a⊗ 1).

This proves that the map

(7.5.e) A→ k[X] ; a 7→ χF ◦ f(a⊗ 1)

does not depend on the choices of the Galois extension F/k and the morphism f : AF →
Mn(F ).

Definition 7.5.5. The map (7.5.e) is called the reduced characteristic polynomial
and denoted by

CprdA : A→ k[X].

Writing this map as anX
n + · · ·+ a0 where a0, . . . , an are maps A→ k and n = deg(A),

we define the reduced norm and reduced trace as

NrdA = (−1)na0 and TrdA = −an−1.

By construction, when A = Mn(k), the reduced characteristic polynomial (resp.
reduced trace, reduced norm) coincides with the characteristic polynomial (resp. trace,
norm) of matrices.

If L/k is a separable field extension, it also follows from the construction that the
following diagram commutes

(7.5.f)

A
CprdA //

��

k[X]

��
AL

CprdAL // L[X]

Proposition 7.5.6. Let A be a finite-dimensional central simple k-algebra of degree
n.

(i) For any a ∈ A, we have CpA/k(a) = CprdA(a)n. In particular

NA/k(a) = NrdA(a)n and TrA/k(a) = nTrdA(a).

(ii) Let L be a subalgebra of A, and assume that L is a field. Then n = r[L : k] for some
integer r, and for any l ∈ L we have CprdA(l) = CpL/k(l)r. In particular

NrdA(l) = NL/k(l)r and TrdA(l) = rTrL/k(l).

Proof. (i) : Let f : AF → Mn(F ) be an isomorphism of F -algebras, where F/k is
a Galois extension. Then CpA/k(a) ∈ k[X] maps to CpAF /F (a ⊗ 1) ∈ F [X]. By (7.5.b),

(7.5.d) and Lemma 7.5.2, we have in k[X] ⊂ F [X]

CpAF /F (a⊗ 1) = CpMn(F )/F ◦f(a⊗ 1) = (χF ◦ f(a⊗ 1))n = Cprd(a)n.

(ii) : The first statement follows from Lemma 3.2.4. Let d = [L : k]. Since n2 =
dimk A = d·dimLA, we have dimLA = r2d = nr. Thus the L-vector space A is isomorphic
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to L⊕nr, and it follows from (7.5.b), (7.5.c) and (7.5.d) that CpA/k(l) = CpL/k(l)nr. By

(i), we deduce that CprdA(l)n = CpL/k(l)nr. We conclude using Lemma 7.5.7 below. �

Lemma 7.5.7. Let P,Q ∈ k[X] be monic polynomials, and s ∈ N − {0} such that
P s = Qs. Then P = Q.

Proof. Let R be the set of monic irreducible polynomials in k[X]. Since k[X] is
factorial, there are uniquely determined integers pR, qR for each R ∈ R such that

P =
∏
R∈R

RpR ; Q =
∏
R∈R

RqR .

For each R ∈ R, we have spR = sqR, hence pR = qR, and P = Q. �

We will be mostly interested in the reduced norm. Let us first collect some of its
elementary properties.

Lemma 7.5.8. Let A be a finite-dimensional central simple k-algebra.

(i) For any a, b ∈ A, we have NrdA(ab) = NrdA(a) NrdA(b).
(ii) We have NrdA(1) = 1.

Proof. Extending scalars, we may assume that A 'Mn(k). Since the map NrdMn(k)

sends a matrix to its determinant, the lemma follows from the properties of the determi-
nant. �

Proposition 7.5.9. Let A be a finite-dimensional central simple k-algebra, and a ∈
A. Then a ∈ A× if and only if NrdA(a) 6= 0.

Proof. If a ∈ A×, then NrdA(a) must be nonzero by Lemma 7.5.8. Conversely
assume that NrdA(a) 6= 0. Then NA/k(a) 6= 0 by Proposition 7.5.6 (i), hence left multi-
plication by a is an isomorphism A → A. In particular 1 lies in its image, showing that
a admits a right inverse, which is also a left inverse by Remark 1.1.11. �

Let A be a finite-dimensional central simple k-algebra. Recall from Example 6.3.2
that the k-group GL1(A) is defined by setting GL1(A)(L) = (AL)× for every separable
field extension L/k. The reduced norms induce group morphisms NrdAL : (AL)× → L×

by Lemma 7.5.8, and thus, by the commutativity of the diagram (7.5.f), a morphism of
k-groups

NrdA : GL1(A)→ Gm.

Definition 7.5.10. We define the k-group SL1(A) as the kernel of the morphism
NrdA : GL1(A)→ Gm.

Lemma 7.5.11. We have an exact sequence of k-groups

1→ SL1(A)→ GL1(A)
NrdA−−−→ Gm → 1.

Proof. There exists an isomorphism of ks-algebras Mn(ks) ' Aks for some n. The

composite GLn(ks) ' (Aks)
×

NrdAks−−−−−→ k×s sends a matrix to its determinant, and is
therefore surjective. �

Proposition 7.5.12. Let A be a finite-dimensional central simple k-algebra. Then

H1(k,GL1(A)) = {∗}.
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Proof. If M is an A-module such that the Aks -module Mks is isomorphic to Aks ,
then dimkM = dimk A, so that the A-module M is isomorphic to A by Lemma 2.3.1.
Therefore all twisted forms of the A-module A are isomorphic, and the statement follows
from Proposition 6.4.18 �

Corollary 7.5.13. Let A be a finite-dimensional central simple k-algebra. There is
a natural isomorphism of pointed sets

H1(k, SL1(A)) ' k×/NrdA(A×).

Proof. In view of the sequence of Lemma 7.5.11, this follows by combining Propo-
sition 7.5.12 with Corollary 6.4.11. �

Lemma 7.5.14. The subset NrdA(A×) ⊂ k× depends only on the Brauer-equivalence
class of the finite-dimensional central simple k-algebra A.

Proof. When R is a ring and r an integer, a matrix P ∈Mr(R) is called permutation
if there exists a permutation σ ∈ Sr such that the (i, j)-th coefficient of P is equal to 1
if j = σ(i) and zero otherwise. Such σ is then unique, and we define the signature ε of P
in {−1, 1} as the signature of the permutation σ. If R is a field, then det(P ) = ε.

In order to prove the statement, by Wedderburn’s Theorem 2.1.13, we may assume
that A = Mn(D) for some finite-dimensional central simple division k-algebra D and
integer n. It will suffice to prove that NrdD(D×) = NrdA(A×). The same proof as over
fields shows that every matrix in Mn(D) = A can be made upper triangular by elementary
rows operations. Any invertible upper triangular matrix can then be made diagonal by
elementary rows operations. This implies that the group A× is generated by elementary
matrices (those matrices whose diagonal coefficients are equal to 1, and having a unique
nonzero coefficient off the diagonal), diagonal matrices, and permutation matrices.

Let now F/k be a Galois extension and ϕ : DF → Md(F ) and isomorphism of F -
algebras. Consider the isomorphism of F -algebras f : Mn(Md(F )) → Mnd(F ) given by
viewing a matrix with coefficients in Md(F ) as a block matrix with coefficients in F .
If B1, . . . , Bn ∈ Md(F ), then det(f(diag(B1, . . . , Bn)) = det(B1) · · · det(Bn). If E ∈
Mn(Md(F )) is an elementary matrix, then f(E) is an upper or lower triangular matrix
whose diagonal coefficients are equal to 1, so that det(f(E)) = 1. If P ∈ Mn(Md(F )) is
a permutation matrix with signature ε ∈ {−1, 1}, then f(P ) ∈Mdn(F ) is a permutation
matrix with signature εd, so that det(f(P )) = εd = det(εId) (where Id = 1 ∈ Md(F ) is
the unit matrix). We deduce that the composite

A× = Mn(D)× ⊂Mn(DF )
Mn(ϕ)−−−−→Mn(Md(F ))

f−→Mnd(F )
det−−→ F

(being multiplicative) has the same image as the composite

D× ⊂ DF
ϕ−→Md(F )

det−−→ F

(observe that εId ∈Md(F ) is the image of ε ∈ k× ⊂ D× under ϕ), as required. �

Proposition 7.5.15. Let A be a finite-dimensional central simple k-algebra. Then

NrdA(A×) =
⋃
L

NL/k(L×) ⊂ k×

where L/k runs over the extensions of finite degree splitting A.
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Proof. ⊂ : By Lemma 7.5.14, we may assume that A is division. Let a ∈ A. Then
any a ∈ A is contained in some maximal subfield L of A, and NrdA(a) = NL/k(a) by
Proposition 7.5.6 (ii).
⊃ : Let L/k be a splitting field of A. By Proposition 3.2.2 and Lemma 7.5.14, we

may assume that L ⊂ A and that deg(A) = [L : k]. It then follows from Proposition 7.5.6
(ii) that NL/k(L×) ⊂ NrdA(A×) in k×. �
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Exercises

Exercise 7.1. We have seen in Corollary 1.2.6 that central simple k-algebra of degree
2 are cyclic (in fact quaternion algebras) when k has characteristic 6= 2. In this exercise,
we consider the case when the characteristic of k is arbitrary.

(i) Let D be a finite-dimensional central division k-algebra of degree 2. Show that D
contains a Galois Z/2-algebra as a k-subalgebra, and deduce that D is cyclic.

(ii) Conclude that every finite-dimensional central simple k-algebra of degree 2 is cyclic.

Exercise 7.2. Let A be a finite-dimensional central simple k-algebra.

(i) Show that the map

ν : A×A→ k ; (a, b) 7→ TrdA(ab)

is a symmetric k-bilinear form.
(ii) Show that the form ν is nondegenerate, i.e. that the set

{a ∈ A|TrdA(ax) = 0 for all x ∈ A}
is reduced to {0}.

Exercise 7.3. Let A be a finite-dimensional central simple k-algebra of degree n.
Let x ∈ A and P = CprdA(x) ∈ k[X] its reduced characteristic polynomial.

(i) Show that P (x) = 0 ∈ A.
(ii) Assume that x ∈ A×, and let Q = CprdA(x−1) ∈ k[X]. Show that

P (X) = (−X)n ·NrdA(x) ·Q(X−1) ∈ k[X] ⊂ k[X,X−1].

Exercise 7.4. Let D be a finite-dimensional central division k-algebra of degree 3.
When E ⊂ D is a subset, we write

E⊥ = {x ∈ D|TrdD(ex) = 0 for all e ∈ E}.
(i) If V ⊂ D is a k-subspace, show that dimk V

⊥ = 9−dimk V . (Hint: Use Exercise 7.3.)
(ii) Let K be a commutative k-subalgebra of D. Show that K = k or that K/k is a

field extension of degree 3.
(iii) Let x ∈ D× be such that TrdD(x) = TrdD(x−1) = 0. Show that x3 = NrdD(x) ∈

k ⊂ D. (Hint: Use Exercise 7.3.)
(iv) Let E ⊂ D be a maximal subfield. Find z ∈ D−k such that TrdD(z) = TrdD(z−1) =

0. (Hint: Pick a nonzero element u1 ∈ E⊥, and find u2 ∈ {u−1
1 }⊥ ∩ E such that

u2 6∈ u1k. Set z = u1u
−1
2 .)

(v) Let F be the k-subalgebra of D generated by z. Find y ∈ D − F such that

TrdD(yz) = TrdD(yz2) = TrdD(z−1y−1) = TrdD(z−2y−1) = 0.

(Hint: Pick v1 ∈ F⊥−F . Let V = {z−1, z−2}⊥, and find a nonzero v2 ∈ (v1V )∩F .
Set y = v−1

2 v1.)
(vi) Let L be the k-subalgebra of D generated by y. Show that zyz−1 commutes with y

and deduce that zyz−1 ∈ L. (Hint: Show that NrdD(yz2) NrdD(z−1) = NrdD(yz),
and expand using (iii).)

(vii) Show that y 7→ zyz−1 defines a structure of Galois Z/3-algebra on L.
(viii) Deduce that D is cyclic.
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(ix) Conclude that every finite-dimensional central simple k-algebra of degree 3 is cyclic
(this is a theorem of Wedderburn1).

Exercise 7.5. Let n ≥ 1 be an integer, and ω ∈ k a root of unity of order n. Let
a, b ∈ k×. Consider the Galois Z/n-algebra Ra = k[X]/(Xn − a), where i ∈ Z/n acts by
X 7→ ωiX. Up to isomorphism Ra depends only on the class of a in k×/k×n (and on n
and the choice of ω). Let us denote the cyclic algebra (Ra, b) by (a, b)ω.

(i) Show that (a, b)ω ' ((b, a)ω)op.
(ii) If a 6= 1, show that (1− a, a)ω 'Mn(k).

We define the extension K = k( n
√
a) as the splitting field of the polynomial Xn−a ∈ k[X].

(iii) Show that the extension K/k is Galois, that Gal(L/k) ' Z/m for some m dividing

n, and that Ra = Ind
Z/n
Z/m(K) under that isomorphism.

(iv) Prove the “reciprocity law”:

a ∈ Nk(
n√
b)/k(k(

n
√
b))⇐⇒ b ∈ Nk( n

√
a)/k(k( n

√
a)).

1on the other hand, one may construct central simple algebras of degree 4 (over an appropriate field)

which are not cyclic.
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CHAPTER 8

The Brauer group and 2-cocycles

In this chapter, we define the second cohomology group of a commutative discrete
group equipped with a continuous action of a profinite group, using a concrete approach
in terms of cocycles. A more sophisticated approach will be developed in the next chapter,
but this will not make this chapter obsolete. In fact, it is crucial to use this down-to-earth
approach in order to make the connections with first cohomology sets of noncommutative
groups, that is, with torsors.

We have seen that central simple algebras of degree n may be described using the
first cohomology set of PGLn. We will obtain an alternative description of the Brauer
group, as the second cohomology group of Gm. It is in fact a recurring situation that
objects can be described either as low-degree cohomology of a complicated group, or as
higher-degree cohomology of a simpler group. This new description of the Brauer group
has several advantages; in particular this is a group on the nose, and the classes of algebras
of different degrees live in the same cohomology set.

In this chapter we only prove that the Brauer group can be embedded into the
second cohomology group of Gm. This fact still has substantial consequences that can be
expressed in an elementary fashion involving central simple algebras, but are difficult to
prove without cohomology. In particular we show that the class of every central simple
algebra is torsion in the Brauer group, and that its order (called the period of the algebra)
divides its index. We deduce a primary decomposition theorem for division algebras, due
to Brauer.

It is actually not very difficult to finish the identification Brauer group with the
second cohomology group of Gm, using the methods of this chapter via the so-called
crossed-product construction. We prefer to leave this result to the next chapters, where
more sophisticated methods will allow us to give a somewhat more natural proof.

1. 2-cocyles

We fix a profinite group Γ. We will still use the multiplicative notation for the group
laws of discrete Γ-modules, even though they is commutative.

Definition 8.1.1. Let M be a discrete Γ-module. A 2-cocyle of Γ with values in M
is a continuous map α : Γ× Γ → M (for the discrete topology on M) that we denote by
(σ, τ) 7→ ασ,τ , and such that

(8.1.a) (γασ,τ ) · αγ,στ = αγσ,τ · αγ,σ for all γ, σ, τ ∈ Γ.

We denote the set of 2-cocycles of Γ with values in M by Z2(Γ,M). It is naturally an
abelian group, for the operation defined by setting, for ξ, η ∈ Z2(Γ,M)

(ξ · η)σ,τ = ξσ,τ · ησ,τ for all σ, τ ∈ Γ.
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A continuous map β : Γ×Γ→M , denoted by (σ, τ) 7→ βσ,τ , is called a 2-coboundary
if there exists a continuous map a : Γ→M , denoted by σ 7→ aσ, such that

βσ,τ = aσ · (σaτ ) · a−1
στ for all σ, τ ∈ Γ.

A straightforward computation shows that a 2-coboundary is automatically a 2-cocyle,
and the set of 2-coboundaries, denoted by B2(Γ,M), is a subgroup of Z2(Γ,M). We
define

H2(Γ,M) = Z2(Γ,M)/B2(Γ,M).

Two 2-cocyles in Z2(Γ,M) are called cohomologous if they have the same class inH2(Γ,M).

Composing 2-cocycles with a morphism of discrete Γ-modules f : A → B yields a
group morphism

f∗ : H2(Γ, A)→ H2(Γ, B).

Proposition 8.1.2. Let B be a discrete Γ-group and A ⊂ B a discrete Γ-subgroup
such that a · b = b · a for all a ∈ A and b ∈ B. Then the quotient C = B/A is a discrete
Γ-group, and there is an exact sequence of pointed sets

{∗} → AΓ → BΓ → CΓ δ−→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)
δ2

−→ H2(Γ, A).

If x ∈ H1(Γ, C) is represented by a 1-cocyle ξ : Γ → C, then δ2(x) ∈ H2(Γ, A) is repre-
sented by the 2-cocycle α : Γ× Γ→ A defined by setting

ασ,τ = βσ · (σβτ ) · β−1
στ for σ, τ ∈ Γ,

where β : Γ→ B is any continuous map such that βγ ∈ B maps to ξγ ∈ C for all γ ∈ Γ.

Proof. First note that such a continuous map β exists. Indeed choosing a preimage
s(c) ∈ B of each c ∈ C defines a map s : C → B, which is continuous because C has the
discrete topology, and we may take β = s ◦ ξ.

Next observe that ασ,τ belongs to A ⊂ B, because its image in C is ξσ ·(σξτ )·ξ−1
στ = 1,

as ξ is a 1-cocyle. The continuity of α follows from Lemma 4.2.14, for if β factors as Γ/U →
BU for some open normal subgroup U of Γ, then α factors as (Γ/U)×(Γ/U)→ BU . Now,
for γ, σ, τ ∈ Γ, we have in A ⊂ B

(γασ,τ ) · αγ,στ = (γασ,τ ) · βγ · (γβστ ) · β−1
γστ

= βγ · (γασ,τ ) · (γβστ ) · β−1
γστ

= βγ · (γβσ) · (γσβτ ) · (γβ−1
στ ) · (γβστ ) · β−1

γστ

= βγ · (γβσ) · (γσβτ ) · β−1
γστ

= βγ · (γβσ) · β−1
γσ · βγσ · (γσβτ ) · β−1

γστ

= αγ,σ · αγσ,τ ,

proving that α belongs to Z2(Γ, A). The image of α in Z2(Γ, B) is visibly a 2-coboundary.
If β′ : Γ → B is another map lifting ξ, then for each γ ∈ Γ we have β′γ = aγ · βγ ,

where aγ ∈ A. Thus, for σ, τ ∈ Γ, we have in A

α′σ,τ = β′σ · (σβ′τ ) · β′−1
στ = aσ · (σaτ ) · a−1

στ · βσ · (σβτ ) · β−1
στ = aσ · (σaτ ) · a−1

στ · ασ,τ ,

proving that α′ and α are cohomologous. We have proved that the class of α in H2(Γ, A)
does not depend on the choice of the map β.
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Now assume that ξ′ : Γ→ C is cohomologous to ξ. Then there is c ∈ C such that

ξ′γ = c−1 · ξγ · (γc) for all γ ∈ Γ.

Let b ∈ B be a preimage of C. Then the map β′ : Γ → B defined by setting β′γ =

b−1 · βγ · (γb) for all γ ∈ Γ is a lifting of ξ′, and for σ, τ ∈ Γ, we have in A

β′σ · (σβ′τ ) · β′−1
στ = b−1 · βσ · (σb) · (σb−1) · (σβτ ) · (στb) · (b−1 · βστ · (στb))−1

= b−1 · βσ · (σβτ ) · β−1
στ · b

= b−1 · ασ,τ · b = ασ,τ ,

as ασ,τ is central in B. We have proved that the class of α in H2(Γ, A) depends only on
the class of ξ in H1(Γ, C).

Assume that α is a 2-coboundary. Then there exists a continuous map a : Γ → A
such that, for all σ, τ ∈ Γ,

βσ · (σβτ ) · β−1
στ = aσ · (σaτ ) · a−1

στ .

Setting ζγ = βγ ·a−1
γ for γ ∈ Γ defines a continuous map ζ : Γ→ B. This map is 1-cocycle,

since for all σ, τ ∈ Γ,

ζσ · (σζτ ) = βσ · a−1
σ · (σβτ ) · (σaτ )−1 = βστ · a−1

στ = ζστ .

Since for γ ∈ Γ, the element aγ lies in A = ker(B → C), the image of ζγ in C is ξγ . Thus
the class of ζ in H1(Γ, B) maps to the class of ξ in H1(Γ, C), proving the exactness of
the sequence at H1(Γ, C), and the rest was established in Corollary 6.4.13. �

Corollary 8.1.3. Let B be a discrete Γ-module and A ⊂ B a discrete Γ-submodule.
Let C = B/A. Then the exact sequence of Proposition 8.1.2 may be extended to an exact
sequence of groups

1→ AΓ → BΓ → CΓ → H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)→ H2(Γ, A)→ H2(Γ, B).

Proof. In view of Corollary 6.4.13 and Proposition 8.1.2, the only point to verify
is exactness at H2(Γ, A). From the explicit description of the map δ2 given in Corol-
lary 6.4.13, it is clear that the composite H1(Γ, C) → H2(Γ, A) → H2(Γ, B) is trivial.
Let now α : Γ × Γ → A be a 2-cocyle whose image in Z2(Γ, B) is a 2-coboundary. This
means that there exists a continuous map β : Γ→ B such that

ασ,τ = βσ · (σβτ ) · β−1
στ for all σ, τ ∈ Γ.

Since α takes values in A ⊂ B, the image of βσ · (σβτ ) · β−1
στ in C vanishes for every

σ, τ ∈ Γ, which proves that the composite ξ : Γ
β−→ B → C is a 1-cocyle. It follows

from the explicit formula for the map δ2 given in Proposition 8.1.2 that the class of ξ in
H1(Γ, C) is mapped to the class of α in H2(Γ, A). �

Remark 8.1.4. The exact sequence of Corollary 8.1.3 can be further extended on the
right using the morphism H2(Γ, B)→ H2(Γ, C).

The exact sequence of Proposition 8.1.2 is functorial in the following sense. To a
commutative diagram of discrete Γ-groups with exact rows

1 // A //

��

B //

��

C //

��

1

1 // A′ // B′ // C ′ // 1
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such that a · b = b ·a for all a ∈ A, b ∈ B, resp. a ∈ A′, b ∈ B′, corresponds a commutative
diagram of pointed sets with exact rows

{∗} // AΓ //

��

BΓ //

��

CΓ //

��

H1(Γ, A) //

��

H1(Γ, B) //

��

H1(Γ, C) //

��

H2(Γ, A)

��
{∗} // A′Γ // B′Γ // C ′Γ // H1(Γ, A′) // H1(Γ, B′) // H1(Γ, C ′) // H2(Γ, A′).

This assertion may be verified using the explicit formula for the connecting maps δ (see
Proposition 6.4.10) and δ2.

If G is a k-group such that G(ks) is abelian, we will write

H2(k,G) = H2(Gal(ks/k), G(ks)).

Thus if
1→ A→ B → C → 1

is an exact sequence of k-groups such that a · b = b · a for all a ∈ A(ks) and b ∈ B(ks), we
have by Proposition 8.1.2 an exact sequence of pointed sets

{∗} → A(k)→ B(k)→ C(k)
δ−→ H1(k,A)→ H1(k,B)→ H1(k,C)

δ2

−→ H2(k,A)

which is functorial in the sense described above.

2. The Brauer group, II

Recall from §7.3 that every finite-dimensional central simple k-algebra A of degree n
has a class [A] ∈ H1(k,PGLn). The short exact sequence of k-groups (see (7.3.b))

1→ Gm → GLn → PGLn → 1.

yields by Proposition 8.1.2 an exact sequence of pointed sets

(8.2.a) H1(k,GLn)→ H1(k,PGLn)
δn−→ H2(k,Gm).

We will use the additive notation in the abelian group H2(k,Gm).

Lemma 8.2.1. Let A be a finite-dimensional central simple k-algebra of degree n.
Then δn[A] = 0 in H2(k,Gm) if and only if A is split.

Proof. Since δn is a morphism of pointed sets, we have δn[A] = 0 when A is
split. The converse follows from the exact sequence (8.2.a), since H1(k,GLn) vanishes by
Hilbert’s Theorem 90 (Proposition 7.1.1). �

Lemma 8.2.2. Let A,B be finite-dimensional central simple k-algebras. Set m =
deg(A) and n = deg(B). Then

δm([A]) + δn([B]) = δmn([A⊗k B]) ∈ H2(k,Gm)

Proof. By Proposition 8.1.2 (and the discussion below it), the diagram (7.3.c) yields
a commutative diagram

H1(k,PGLm)×H1(k,PGLn) //

(δm,δn)

��

H1(k,PGLm×PGLn) //

��

H1(k,PGLmn)

δmn
��

H2(k,Gm)×H2(k,Gm) // H2(k,Gm ×Gm) // H2(k,Gm)
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Since the map Gm × Gm → Gm in the diagram (7.3.c) is the group operation of Gm,
it follows that the lower composite in the above diagram is the operation in the group
H2(k,Gm). The upper composite maps ([A], [B]) to [A ⊗k B] by Proposition 7.3.1, and
the statement follows. �

Proposition 8.2.3. Mapping a finite-dimensional central simple k-algebra A to the
element δdeg(A)([A]) yield an injective group morphism

Br(k)→ H2(k,Gm).

Proof. Let A be a finite-dimensional central simple k-algebra of degree m. Since
δn([Mn(k)]) = 0 for any integer n, it follows from Lemma 8.2.2 that δm[A] = δmn(Mn(A)).
Thus A 7→ δm[A] induces a map Br(k) → H2(k,Gm) which is injective by Lemma 8.2.1,
and a group morphism by Lemma 8.2.2. �

Remark 8.2.4. We will prove later that this morphism is in fact bijective.

3. The period

Theorem 8.3.1. Let A be a finite-dimensional central simple k-algebra. Then ind(A)·
[A] = 0 in Br(k).

Proof. We may assume that A is division, and let n = ind(A) = deg(A). The
commutative diagram of k-groups with exact rows (where det : GLn → Gm denotes the
morphism of k-groups sending a matrix to its determinant, and n : Gm → Gm is the
morphism x 7→ xn)

1 // Gm //

n

��

GLn

det

��

// PGLn

��

// 1

1 // Gm
= // Gm // 1 // 1

gives rise to a commutative diagram of pointed sets

H1(k,PGLn)
δn //

��

H2(k,Gm)

n

��
{∗} // H2(k,Gm)

It follows that nδn([A]) = 0 in H2(k,Gm), so that by Proposition 8.2.3 we have n[A] = 0
in Br(k). �

Corollary 8.3.2. For every finite-dimensional central simple k-algebra A, there
exist integers r, n ∈ N− {0} such that A⊗n 'Mr(k).

Corollary 8.3.3. Let L/k be a field extension of finite degree. Then the map
Br(L/k)→ Br(L/k) given by multiplication by [L : k] is zero.

Proof. This follows from Corollary 3.2.3 and Theorem 8.3.1. �

Proposition 8.3.4. Assume that the field k has positive characteristic p and is perfect
(i.e. every algebraic extension of k is separable). Then the map Br(k) → Br(k) given by
multiplication by p is an isomorphism.
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Proof. The map k×s → k×s given by x 7→ xp is injective because ks has characteris-
tic p, and surjective because ks is algebraically closed. It follows that multiplication by
p is bijective in H2(Gal(ks/k), k×s ) = H2(k,Gm), hence injective in Br(k) by Proposi-
tion 8.2.3. Now for every element x ∈ Br(k), there exists a nonzero integer n such that
nx = 0 by Theorem 8.3.1. If n = pm for some integer m, we must have mx = 0, as mul-
tiplication by p is injective in Br(k). We may thus assume that n is prime to p. Writing
1 = un+ vp with u, v ∈ Z, we have x = unx+ vpx = p(vx), proving that multiplication
by p is surjective in Br(k). �

Definition 8.3.5. Let A be a finite-dimensional central simple k-algebra. The order
of the class of A in the group Br(k) is called the period of A, and is denoted by per(A).

The period of A is thus the smallest integer n > 0 such that A⊗n splits. By Theo-
rem 8.3.1, we have

(8.3.a) per(A) | ind(A).

The next proposition is reminiscent of Proposition 3.2.8.

Proposition 8.3.6. Let A be a finite-dimensional central simple k-algebra, and L/k
a field extension of finite degree. Then

per(AL) | per(A) | [L : k] per(AL).

Proof. The first divisibility is clear. The element per(AL) · [A] belongs to Br(L/k),
hence [L : k] per(AL) · [A] = 0 in Br(k) by Corollary 8.3.3, which yields the second
divisibility. �

Proposition 8.3.7. Let A be a finite-dimensional central simple k-algebra. Then the
integers per(A) and ind(A) have the same prime divisors.

Proof. In view of (8.3.a), every prime divisor of per(A) certainly divides ind(A).
Conversely, let p be a prime divisor of ind(A). Let L/k be a separable field extension
splitting A and such that [L : k] = ind(A) (see Corollary 3.3.4). Then L is contained
in some finite Galois extension E/k by Lemma 4.3.8. Let H be a p-Sylow subgroup of
Gal(E/k), and set K = EH . Then [K : k] is prime to p and [E : K] is a power of p. The
integer ind(A) divides the product [K : k] ind(AK) by Proposition 3.2.8, hence ind(AK)
is divisible by p. Moreover ind(AK) divides [E : K] (by Corollary 3.2.3), hence ind(AK)
is a power of p. Thus per(AK) is a power of p by (8.3.a). Since AK is not split (as its
index is divisible by p), it follows that per(AK) 6= 1, so that p | per(AK) | per(A). �

Proposition 8.3.8 (Brauer). Let D be a finite-dimensional central division k-algebra.
Write

ind(D) = q1 · · · qn
where q1, . . . , qn are powers of pairwise distinct prime numbers. Then there are finite-
dimensional central division k-algebras Di such that ind(Di) = qi for i = 1, . . . , n and

D ' D1 ⊗k · · · ⊗k Dn.

Proof. For i = 1, . . . , n, let pi be the prime divisor of qi. By Theorem 8.3.1 we
may write per(D) = b1 · · · bn, where bi | qi for each i = 1, . . . , n. The elements ri =
per(D)/bi for i = 1, . . . , n are coprime, hence there exist integers a1, . . . , an ∈ Z such that
a1r1 + · · ·+anrn = 1. For each i = 1, . . . , n, let Di be a finite-dimensional central division
k-algebra whose class in Br(k) is airi · [D]. Then D1⊗k · · · ⊗kDn is Brauer equivalent to



115 8. The Brauer group and 2-cocycles

D. Also, for each i = 1, . . . , n we have per(Di) | bi (as bi ·[Di] = ai per(D)·[D] = 0), hence
ind(Di) is a power of pi by Proposition 8.3.7. It follows from Corollary 3.2.11 (applied
n− 1 times) that the k-algebra D1⊗k · · ·⊗kDn is division, hence isomorphic to D. Since
ind(D1) · · · ind(Dn) = q1 · · · qn, we see that ind(Di) = qi for all i = 1, . . . , n (by looking
at the pi-adic valuation). �
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CHAPTER 9

Cohomology of groups

In this chapter we present the classical construction of group cohomology (with
abelian coefficients) using homological methods. The aim is to define cohomology groups
in degrees higher than two, in a way which permits to extend the long exact sequences
obtained earlier.

The main purpose of this machinery is to produce (infinite) long exact sequences of
cohomology groups from short exact sequences of coefficients groups. Besides, this ap-
proach has two important consequences, including for cohomology groups in degrees 1 and
2; both of those can be obtained directly in low degrees, but the homological approach is
particularly effective in these situations. The first such consequence is Shapiro’s Lemma
computing the cohomology coinduced modules. Like Hilbert’s Theorem 90, this lemma
provides vanishing results, which are at the basis of many computations of Galois coho-
mology groups. The second consequence is the construction of corestriction morphisms,
together with the associated projection formula. This is a very useful tool when trying
to control torsion phenomena in the cohomology groups and passing to subgroups (the
so-called “transfer” or “restriction-corestriction” arguments).

We start with the cohomology of finite groups, and more generally, discrete groups.
This is done using projective resolutions of the module Z equipped with the trivial group
action. The cohomology of profinite groups (the main case of interest for Galois coho-
mology) can then be obtained as the direct limit of the cohomology of its finite quotients.
These cohomology groups cannot simply be constructed using projective resolutions as in
the finite case, because such resolutions need not exist in the category of discrete mod-
ules when the group is not discrete. They could, however, be constructed directly using
injective resolutions of the coefficient module, a strategy that is not pursued here.

1. Projective Resolutions

In this section, we fix a (unital associative) ring R. As before, an R-module means a
left R-module.

Definition 9.1.1. AnR-module P is called projective if for every surjectiveR-module
morphism M → N , the natural morphism HomR(P,M)→ HomR(P,N) is surjective.

Lemma 9.1.2. Every direct summand of a projective R-module is projective.

Proof. Let P be a projective R-module, and B a direct summand of P . Let M → N
be a surjective morphism of R-modules and f : B → N a morphism of R-modules. By
projectivity of P , the composite P → B → N lifts to a morphism P → M . Then the
composite B → P →M is a lifting of f . We have proved that B is projective. �

Proposition 9.1.3. An R-module is projective if and only if it is a direct summand
of a free module.
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Proof. Let P be a projective R-module. Let F be the free R-module on the basis ep
for p ∈ P . The morphism of R-modules f : F → P given by ep 7→ p is visibly surjective.
By projectivity of P , we find a morphism of R-modules s : P → F such that f ◦ s = idP .
We have proved that P is a direct summand of F .

Let now L be a free R-module, with basis lα for α ∈ A. Let M → N be a surjective
morphism of R-modules and f : L→ N a morphism of R-modules. For each α ∈ A, pick
a preimage mα ∈ M of f(lα) ∈ N . Then lα 7→ mα defines a morphism of R-modules
F →M such that the composite F →M → N is f . We have proved that L is projective,
and conclude using Lemma 9.1.2. �

Definition 9.1.4. A chain complex (of R-modules) C is a collection of R-modules
Ci and morphisms of R-modules dCi : Ci → Ci−1 for i ∈ Z, satisfying

dCi−1 ◦ dCi = 0 for all i ∈ Z.

The chain complex C is called exact if ker dCi = im dCi+1 for all i ∈ Z. A morphism of
chain complexes f : C → C ′ is a collection of morphisms fi : Ci → C ′i such that

fi−1 ◦ dCi = dC
′

i ◦ fi for all i ∈ Z.

Definition 9.1.5. Let M be an R-module. A resolution C →M is a chain complex
C such that Ci = 0 for i < 0, together with a morphism C0 →M such that the augmented
chain complex

· · · → C1 → C0 →M → 0

is exact. A resolution C →M is said to be projective if each Ci is so.

Lemma 9.1.6. Every R-module admits a projective resolution.

Proof. Let M be an R-module. Set M = P−1 and Pi = 0 for i < −1. We proceed
by induction, and assume that the exact sequence Pi → Pi−1 → · · · → P0 → P−1 → 0 is
constructed for some i ≥ −1. Let N = ker(Pi → Pi−1), and let Pi+1 be the free module
on the basis en for n ∈ N . Then Pi+1 is projective by Proposition 9.1.3. The morphism
of R-modules Pi+1 → N given by sending en 7→ n is surjective, and the composite
Pi+1 → N ⊂ Pi fits into the required exact sequence. �

Definition 9.1.7. We say that the morphisms of chain complexes f, g : C → C ′ are
homotopic if there exists a collection of morphisms si : Ci → C ′i+1 for i ∈ Z such that

fi − gi = dC
′

i+1 ◦ si + si−1 ◦ dCi .

A morphism of chain complexes f : M → N is a homotopy equivalence if there exists a
morphism of chain complexes g : N → M such that f ◦ g is homotopic to the identity of
N and g ◦ f is homotopic to the identity of M .

Proposition 9.1.8. Let E and P be chain complexes of R-modules. Assume that

(i) Pi = Ei = 0 for i < −1.
(ii) Pi is projective for i ≥ 0.

(iii) E is exact.

Let g : P−1 → E−1 be a morphism of R-modules. Then there exists a morphism of chain
complexes of R-modules f : P → E such that f−1 = g. This morphism is unique up to
homotopy.
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Proof. We construct fi : Pi → Ei inductively, starting with f−1 = g. Assume that
i ≥ 0 and that fi−1 is constructed. The composite fi−1 ◦ dPi : Pi → Ei−1 has image
contained into ker dEi−1, because

dEi−1 ◦ fi−1 ◦ dPi = fi−2 ◦ dPi−1 ◦ dPi = 0.

By exactness of the chain complex E, the morphism Ei → ker dEi−1 induced by dEi is
surjective, hence by projectivity of Pi, we may find a morphism of R-modules fi : Pi → Ei
such that dEi ◦ fi = fi−1 ◦ dPi .

Now let f, f ′ : P → E be two morphisms of chain complexes extending g. We con-
struct for each i ∈ Z a morphism of R-modules si : Pi → Ei+1 such that

fi − f ′i = dEi+1 ◦ si + si−1 ◦ dPi
by induction on i. We let si = 0 for i < −1. Assume that si−1 is constructed. Then

dEi ◦ (fi − f ′i) = (fi−1 − f ′i−1) ◦ dPi
= dEi ◦ si−1 ◦ dPi + si−2 ◦ dPi−1 ◦ dPi
= dEi ◦ si−1 ◦ dPi ,

so that the morphism (fi − f ′i) − si−1 ◦ dPi : Pi → Ei has image in ker dEi . By exactness
of the chain complex E, the morphism Ei+1 → ker dEi is surjective. By projectivity of
Pi, we obtain a morphism si : Pi → Ei+1 such that dEi+1 ◦ si = (fi − f ′i) − si−1 ◦ dPi , as
required. �

Corollary 9.1.9. Let M be an R-module, and let P → M and P ′ → M projective
resolutions. Then there exists a morphism of chain complexes P → P ′ such that the
composites P0 → P ′0 → M and P0 → M coincide. Such a morphism is unique up to
homotopy, and is a homotopy equivalence.

Proof. By Proposition 9.1.8, the identity of M extends to morphisms of chain
complexes P → P ′ and P ′ → P , which are unique up to homotopy. The composite
P → P ′ → P and the identity of P are both extensions of the identity of M . They
must be homotopic by the unicity part of Proposition 9.1.8. For the same reason, the
composite P ′ → P → P ′ is homotopic to the identity of P ′. �

2. Cochain complexes

Definition 9.2.1. A cochain complex (of R-modules) C is a collection of R-modules
Ci and morphisms of R-modules diC : Ci → Ci+1 for i ∈ Z, called coboundary morphisms,
satisfying

di+1
C ◦ diC = 0 for all i ∈ Z.

The R-module

Hi(C) = ker diC/ im di−1
C

is called the i-th cohomology of the cochain complex C. A morphism of cochain complexes
f : C → C ′ is a collection of morphisms of R-modules f i : Ci → C ′i such that

f i+1 ◦ diC = diC′ ◦ f i for all i ∈ Z.

Such a morphism induces morphisms of R-modules Hi(C)→ Hi(C ′) for all i ∈ Z.
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Definition 9.2.2. We say that the morphisms of cochain complexes f, g : C → C ′

are homotopic if there is a collection of morphisms si : Ci → C ′i−1 for i ∈ Z such that

f i − gi = di−1
C′ ◦ s

i + si+1 ◦ diC .
A morphism of cochain complexes f : C → C ′ is a homotopy equivalence if there exists a
morphism of cochain complexes g : C ′ → C such that f ◦ g is homotopic to the identity
of C ′ and g ◦ f is homotopic to the identity of C.

Proposition 9.2.3. Homotopic morphisms induce the same morphism in cohomol-
ogy.

Proof. In the notation of Definition 9.2.2, the morphism di−1
C′ ◦ si has image con-

tained in im di−1
C′ and the kernel of the morphism si+1 ◦ diC contains ker diC . These mor-

phisms thus induce the zero morphism in cohomology by construction. �

Corollary 9.2.4. A homotopy equivalence induces isomorphisms in cohomology.

Definition 9.2.5. A sequence of cochain complexes

0→ C ′ → C → C ′′ → 0

is called exact if the sequence

0→ C ′i → Ci → C ′′i → 0

is exact for each i ∈ Z.

Proposition 9.2.6. An exact sequence of cochain complexes of R-modules

0→ C ′ → C → C ′′ → 0

induces an exact sequence of R-modules

· · · → Hi−1(C ′′)→ Hi(C ′)→ Hi(C)→ Hi(C ′′)→ Hi+1(C)→ · · ·
Given a commutative diagram of cochain complexes of R-modules

0 // C ′

��

// C //

��

C ′′ //

��

0

0 // D′ // D // D′′ // 0

having exact rows, the induced diagram of R-modules

· · · // Hi−1(C ′′)

��

// Hi(C ′) //

��

Hi(C) //

��

Hi(C ′′) //

��

Hi+1(C ′) //

��

· · ·

· · · // Hi−1(D′′) // Hi(D′) // Hi(D) // Hi(D′′) // Hi+1(D′) // · · ·

is commutative.

Proof. (The is the so-called “snake lemma”; details are left as an exercise.) Given
a ∈ Hi−1(C ′′), choose a representative b ∈ C ′′i−1 such that di−1

C′′ (b) = 0. Pick a preimage

c ∈ Ci−1 of b, and let e = di−1
C (c) ∈ Ci. Then e is mapped to zero in C ′′i, hence is

the image of an element f ∈ C ′i. One may then check that the class of f in Hi(C ′)
does not depend on any of the choices made, and that the map ∂ : Hi−1(C ′′) → Hi(C ′)
given sending x to the class of f is a morphism of R-modules fitting into the above exact
sequences and diagrams. �
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3. Cohomology of discrete groups

In this sectionG is a group (endowed with the discrete topology). We consider the ring
Z[G] defined as the free abelian group on the basis eg for g ∈ G, with the multiplication
given by egeh = egh for g, h ∈ G. Observe that a Z[G]-module structure on an abelian
group A is the same thing as an action of the group G by group automorphisms, the
action of g ∈ G corresponding to left multiplication by eg ∈ Z[G]. In order to lighten
the notation, we will usually denote the element eg ∈ Z[G] simply by g. We will use the
additive notation for the group action on a Z[G]-module A, and denote the action of an
element g ∈ G on A by x 7→ gx.

The cohomology groups. Let A be Z[G]-module and C a chain complex of Z[G]-
modules. We denote by HomZ[G](C,A) the cochain complex of of abelian groups (i.e.

Z-modules) such that (HomZ[G](C,A))i = HomZ[G](Ci, A) for all i ∈ Z, and

diHomZ[G](C,A) : HomZ[G](Ci, A)→ HomZ[G](Ci+1, A)

is the morphism induced by composition with dCi+1.
A morphism of chain complexes of Z[G]-modules f : C → C ′ induces a morphism of

cochain complexes of abelian groups

HomZ[G](f,A) : HomZ[G](C
′, A)→ HomZ[G](C,A).

If f is homotopic to g, then HomZ[G](f,A) is homotopic to HomZ[G](g,A). Thus a homo-
topy equivalence C → C ′ induces a homotopy equivalence HomZ[G](C

′, A)→ HomZ[G](C,A),
and therefore isomorphismsHq(HomZ[G](C

′, A))→ Hq(HomZ[G](C,A)) for all q by Corol-
lary 9.2.4.

Definition 9.3.1. Let A be a Z[G]-module. We view Z as a Z[G]-module with
trivial G-action, and choose a projective resolution P → Z. By the discussion above and
Corollary 9.1.9, for each q ∈ Z the group Hq(HomZ[G](P,A)) is independent of the choice
of the projective resolution P , up to a canonical isomorphism. We denote this group by
Hq(G,A).

It follows from the construction that Hq(G,A) = 0 for q < 0.

Remark 9.3.2. If G = 1, then H0(G,A) = A and Hq(G,A) = 0 for all q > 0. Indeed
a projective resolution P of Z is given by setting P0 = Z and Pi = 0 for i 6= 0, where the
morphism P0 → Z is the identity.

Lemma 9.3.3. For every Z[G]-module A, we have H0(G,A) = AG.

Proof. Observe that AG = HomZ[G](Z, A). Let P → Z be a projective resolution,
as Z[G]-module. The exact sequence of Z[G]-modules

P1 → P0 → Z→ 0

induces an exact sequence of abelian groups (exercise)

0→ HomZ[G](Z, A)→ HomZ[G](P0, A)→ HomZ[G](P1, A),

so that

HomZ[G](Z, A) = ker(HomZ[G](P0, A)→ HomZ[G](P1, A)) = H0(HomZ[G](P,A)). �
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Let now f : A→ A′ be a morphism of Z[G]-modules. Composition with f induces a
morphism of cochain complex of abelian groups

HomZ[G](P,A)→ HomZ[G](P,A
′)

and thus morphisms of abelian groups for all q

f∗ : Hq(G,A)→ Hq(G,A′).

Observe that for every q, the map

HomZ[G](A,A
′)→ HomZ(Hq(G,A), Hq(G,A′)) ; f 7→ f∗

is a morphism of abelian groups, and that the associations A 7→ Hq(G,A) and f 7→ f∗
define a functor from the category of Z[G]-modules to the category of abelian groups.

Proposition 9.3.4. Every exact sequence of Z[G]-modules

0→ A→ B → C → 0

induces an exact sequence of abelian groups

· · · → Hq−1(G,C)→ Hq(G,A)→ Hq(G,B)→ Hq(G,C)→ · · ·

Given a commutative diagram of Z[G]-modules

0 // A

��

// B //

��

C //

��

0

0 // A′ // B′ // C ′ // 0

having exact rows, the induced diagram of abelian groups

· · · // Hq−1(G,C)

��

// Hq(G,A) //

��

Hq(G,B) //

��

Hq(G,C) //

��

· · ·

· · · // Hq−1(G,C ′) // Hq(G,A′) // Hq(G,B′) // Hq(G,C ′) // · · ·

is commutative.

Proof. Let P → Z be a projective resolution. Since each Z[G]-modules Pi is pro-
jective, we have an exact sequence of cochain complexes of abelian groups

0→ HomZ[G](P,A)→ HomZ[G](P,B)→ HomZ[G](P,C)→ 0.

The statement (including the fact that the long exact sequence obtained does not depend
on the choice of P ) is then a consequence of Proposition 9.2.6. �

Remark 9.3.5. Let A,B be Z[G]-modules, and set B = A ⊕ C. Then the mor-
phisms A → B → A and C → B → C induce decompositions Hq(G,B) = Hq(G,A) ⊕
Hq(G,C) as abelian groups for each q ≥ 0. In this case the connecting homomorphisms
Hq−1(G,C)→ Hq(G,A) appearing in Proposition 9.3.4 are zero.

Let now ψ : G→ G′ be a group morphism and A a Z[G′]-module. We may view any
Z[G′]-module as a Z[G]-module using ψ. Choose a projective resolution P of the Z[G]-
module Z, and a projective resolution P ′ of the Z[G′]-module Z. Then by Proposition 9.1.8
there exists a morphism of chain complexes of Z[G]-modules f : P → P ′, which is unique
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up to homotopy. This morphism induces a morphism of cochain complexes of abelian
groups

HomZ[G′](P
′, A) = HomZ[G](P

′, A)
HomZ[G](f,A)
−−−−−−−−−→ HomZ[G](P,A).

Taking the cohomology, we obtain morphisms of abelian groups

ψ∗ : Hq(G′, A)→ Hq(G,A)

for all q, which does not depend on the choices of P, P ′ or f by Proposition 9.2.3.
In particular, when H ⊂ G is a subgroup, we have thus constructed the restriction

morphisms
ResGH : Hq(G,A)→ Hq(H,A).

Explicit resolutions. We now describe a canonical projective resolution of the Z[G]-
module Z (endowed with the trivial G-action). For each i ∈ N, let Li be the free abelian
group on the basis Gi+1. A G-action is given by g(g0, . . . , gi) = (gg0, . . . , ggi). The Z[G]-
module Li is free, a basis being given by the elements (1, g1, . . . , gi). For i ≥ 1, consider
the morphism of abelian groups dLi : Li → Li−1 defined by

dLi (g0, . . . , gi) =

i∑
j=0

(−1)j(g0, . . . , ĝj , . . . , gi),

where the notation ĝj means that the element gj is omitted. Let us write Li = 0 for
i < −1 and dLi = 0 for i ≤ 0. We have thus constructed a chain complex of Z[G]-modules
L. We define a morphism of abelian groups ε : L0 → Z by (g0) 7→ 1 for all g0 ∈ G. Note
that ε is a morphism of Z[G]-modules for the trivial G-action on Z, and that ε ◦ dL0 = 0.

Let us define a chain complex of Z[G]-modules L̃ by setting L̃i = Li for i 6= −1 and

L̃−1 = Z with the trivial G-action, together with dL̃i = dLi for i 6= 0, and dL0 = ε.

Lemma 9.3.6. The complex L̃ is exact.

Proof. Consider the group morphisms (which are not Z[G]-linear in general!)

si : L̃i → L̃i+1 : (g0, . . . , gi) 7→ (1, g0, . . . , gi)

for i ≥ 0. Let s−1 : Z = L̃−1 → L̃0 be given by n 7→ n(1), and set si = 0 for i < −1.

Then dL̃i+1 ◦ si + si−1 ◦ dL̃i = idL̃i for all i, which implies the statement. �

Remark 9.3.7. We just proved that L̃ is homotopic to 0, when viewed as a complex
of Z-modules. Of course, this is in general not true as a complex of Z[G]-modules.

When A is a Z[G]-module, we obtain a cochain complex of abelian groups C(G,A) =
HomZ[G](L,A). For i ∈ Z, we thus have

Ci(G,A) = HomZ[G](Li, A),

and set
Zi(G,A) = ker diC(G,A) and Bi(G,A) = im diC(G,A).

Since each Li is free, hence L is a projective resolution of the Z[G]-module Z (Lemma 9.3.6),
it follows that

Hi(G,A) = Zi(G,A)/Bi(G,A).

For g1, . . . , gi ∈ G, the elements

[g1, . . . , gi] = (1, g1, g1g2, . . . , g1 · · · gi)
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for a basis of the Z[G]-module Li. An element f ∈ Ci(G,A) then corresponds to a map
a : Gi → A given by

(g1, . . . , gi) 7→ ag1,...,gi = f [g1, . . . , gi].

The element diC(G,A)(f) ∈ Ci+1(G,A) is then given by the map b : Gi+1 → A defined by

(9.3.a) bg1,...,gi+1 = g1ag2,...,gi+1 +

i∑
j=1

(−1)jag1,...,gjgj+1,...,gi+1 + (−1)i+1ag1,...,gi .

Example 9.3.8 (1-cocyles). An element ξ : g 7→ ag of C1(G,A) belongs to Z1(G,A)
if and only if g1ξg2

− ξg1g2
+ ξg1

= 0 for all g1, g2 ∈ G, which is exactly (6.4.a) written
additively. The element ξ belongs to B1(G,A) if and only if there exists a ∈ A such that
ξg1

= g1a − a for all g1 ∈ G, which means that the 1-cocyle ξ is cohomologous to the
trivial 1-cocyle. Thus we recover the group H1(G,A) defined earlier when G is finite.

Example 9.3.9 (2-cocyles). An element α : (g, h) 7→ ag,h of C2(G,A) belongs to
Z2(G,A) if and only if

0 = g1αg2,g3
− αg1g2,g3

+ αg1,g2g3
− αg1,g2

for all g1, g2, g3 ∈ G, which is exactly (8.1.a) written additively. The element α belongs
to B2(G,A) if and only if there exists a map a : G→ A denoted by g 7→ ag such that

αg1,g2
= g1ag2

− ag1g2
+ ag1

for all g1, g2 ∈ G, which means that the 2-cocyle α is a 2-coboundary. Thus we recover
the group H2(G,A) defined earlier when G is finite.

Remark 9.3.10. Under the identifications of Example 9.3.8 and Example 9.3.9, the
long exact sequence of Proposition 8.1.2 coincides with the relevant part of the long exact
sequence of Proposition 9.3.4 (this may be checked using (9.3.a)).

Example 9.3.11 (Cohomology of cyclic groups). Assume that the group G is finite
and cyclic, generated by σ. Consider the elements

N =
∑
g∈G

g ∈ Z[G] ; D = σ − 1 ∈ Z[G].

We define a projective resolution C of the Z[G]-module Z as follows. Set Ci = 0 if
i < 0 and Ci = Z[G] if i ≥ 0. For i > 0, the morphism dCi : Ci → Ci−1 is defined as
the multiplication with D if i is odd, and the multiplication with N if i is even. The
morphism C0 = Z[G] → Z is given by g 7→ 1 for all g ∈ G. One verifies easily that the
complex C is exact (observe that Z[G] ' Z[X]/(Xn − 1) with σ 7→ X and n = |G|).

Let now A be a Z[G]-module. Then for i ≥ 0, we have HomZ[G](Ci, A) = A, and the
morphism HomZ[G](Ci, A) → HomZ[G](Ci+1, A) corresponds to the endomorphism of A

given by the action of N if i is odd, and by the action of D if i is even. Noting that AG is
the kernel of D : A→ A, and letting NA be the kernel of N : A→ A, we obtain for q > 0

Hq(G,A) =

{
AG/NA if q is even,

NA/DA if q is odd.
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Coinduced modules.

Definition 9.3.12. Let H be a subgroup of G, and B a Z[H]-module. We define a
Z[G]-module

MG
H(B) = HomZ[H](Z[G], B),

where the G-action is defined by letting gf : Z[G]→ B be the map given by x 7→ f(xg),
when g ∈ G and f : Z[G]→ B.

Equivalently, one may think of MG
H(B) as the set of maps f : G → B such that

f(hx) = hf(x) for all h ∈ H and x ∈ G, with the group structure given by pointwise
operations on B, and the G-action given by (gf)(x) = f(xg) for g, x ∈ G.

Example 9.3.13. Assume that G is finite, and let S be the split Galois G-algebra
of Example 5.5.8 over the field k. Then S ' MG

1 (k) as Z[G]-modules. Moreover, a map

G → k is invertible in S if and only if it takes values in k×. Thus S× ' MG
1 (k×) as

Z[G]-modules.

Let H be a subgroup of G, and B a Z[H]-module. We consider the morphism of
Z[H]-modules

ρ : MG
H(B)→ B ; f 7→ f(1).

Lemma 9.3.14. Let H be a subgroup of G. Let A be a Z[G]-module and B a Z[H]-
module. Then the morphism of abelian groups

HomZ[G](A,M
G
H(B))→ HomZ[H](A,B) ; f 7→ ρ ◦ f

is bijective.

Proof. Let us construct the inverse morphism. Let ϕ : A → B be a morphism
of Z[H]-modules. Consider the map ψ : A → MG

H(B) sending a ∈ A to the mor-
phism of Z[H]-modules Z[G] → B given by g 7→ ϕ(ga). The map ψ is a morphism
of Z[G]-modules, so that ϕ 7→ ψ defines a morphism of abelian groups HomZ[H](A,B)→
HomZ[G](A,M

G
H(B)).

Clearly ρ◦ψ = ϕ. Conversely, assume that ϕ = ρ◦f for some f ∈ HomZ[G](A,M
G
H(B)).

Then for any a ∈ A and g ∈ G,

ψ(a)(g) = ϕ(ga) = ρ(f(ga)) = ρ(g(f(a))) = (g(f(a)))(1) = f(a)(g)

so that ψ = f . �

Proposition 9.3.15 (Shapiro’s Lemma). Let H be a subgroup of G and B a Z[H]-
module. Then the composite

Hq(G,MG
H(B))

ResGH−−−→ Hq(H,MG
H(B))

ρ∗−→ Hq(H,B)

is bijective, for every q ≥ 0.

Proof. The Z[H]-module Z[G] is free, a basis being given by (the elements corre-
sponding to) a set of representatives of G/H. It follows from Proposition 9.1.3 that any
projective Z[G]-module is also projective as a Z[H]-module. Thus if P is a projective
resolution of the Z[G]-module Z, it is also a projective resolution of the Z[H]-module Z.
Lemma 9.3.14 shows that that morphism of complexes of abelian groups

HomZ[G](P,M
G
H(B))→ HomZ[H](P,M

G
H(B))→ HomZ[H](P,B)

is an isomorphism, and the result follows by passing to cohomology. �
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Corollary 9.3.16. Let B be an abelian group. Then Hq(G,MG
1 (B)) = 0 for q > 0.

Proof. This follows from Remark 9.3.2 and Proposition 9.3.15. �

Now assume that H ⊂ G is a subgroup of finite index, and let A be a Z[G]-module.

Let f ∈ MG
H(A). If X ⊂ G is a set of representatives of G/H, consider the element

(9.3.b) u =
∑
x∈X

xf(x−1) ∈ A.

From the fact that f is a morphism of Z[H]-modules follows that u does not depend on
the choice of the set of representatives X ⊂ G. If g ∈ G, then∑

x∈X
x(gf)(x−1) =

∑
x∈X

xf(x−1g) = g
∑

y∈g−1X

yf(y−1) = gu,

since g−1X ⊂ G is again a set of representatives of G/H. We have thus defined a
morphism of Z[G]-modules

(9.3.c) µ : MG
H(A)→ A ; f 7→ u

which using Proposition 9.3.15 induces the corestriction morphisms for all q

CoresGH : Hq(H,A) = Hq(G,MG
H(A))

µ∗−→ Hq(G,A).

Proposition 9.3.17. Let H be a subgroup of finite index in G. Let A be a Z[G]-
module. Then the composite

Hq(G,A)
ResGH−−−→ Hq(H,A)

CoresGH−−−−−→ Hq(G,A)

coincides with multiplication by [G : H], for every q ≥ 0.

Proof. Consider the morphism of Z[G]-modules

σ : A→ MG
H(A)

sending a ∈ A to the map G → A given by g 7→ ga. Since ρ ◦ σ is the identity of the
Z[H]-module A, it follows from Proposition 9.3.15 that the induced morphism

Hq(G,A)
σ∗−→ Hq(G,MG

H(A)) = Hq(H,A)

coincides with ResGH . Now it follows from the formula (9.3.b) that the composite

A
σ−→ MG

H(A)
µ−→ A

is multiplication by [G : H]. �

Corollary 9.3.18. Let H be a subgroup of finite index in G and A a Z[G]-module.
If the morphism A → A given by multiplication by [G : H] is bijective, then the maps

ResGH : Hq(G,A)→ Hq(H,A) are injective for all q ≥ 0.

Proof. Denote by f : A → A the morphism given by multiplication by [G : H].
Then the morphisms Hq(G,A)→ Hq(G,A) given by (f−1)∗ and f∗ are mutually inverse.
Since the morphism f∗ is given by multiplication by [G : H] in Hq(G,A), it follows from

Proposition 9.3.17 that ResGH must be injective. �

Corollary 9.3.19. If G is finite, then the morphisms Hq(G,A) → Hq(G,A) given
by multiplication by |G| are zero for all q > 0.



127 9. Cohomology of groups

Proof. By Proposition 9.3.17 multiplication by |G| in Hq(G,A) factors through
Hq(1, A), which vanishes when q > 0 by Remark 9.3.2. �

4. Cohomology of profinite groups

Direct limits. We now discuss the notion of direct limit, which is in a sense dual to
the notion of inverse limit introduced in §4.1. Here we will limit ourselves to the case of
abelian groups.

Definition 9.4.1. Let (A,≤) be a directed set (Definition 4.1.1). A direct system of
abelian groups (indexed by A) is the data of:

— for each α ∈ A an abelian group Eα,
— for each α ≤ β in A a group morphism fαβ : Eα → Eβ (called transition mor-

phism).

These data must satisfy the following conditions:

(i) For each α ∈ A, we have fαα = idEα .
(ii) For each α ≤ β ≤ γ in A, we have fβγ ◦ fαβ = fαγ .

Definition 9.4.2. The direct limit of a direct system of abelian groups (Eα, fαβ) is
defined as

E = lim
−→

Eα =
(⊕
α∈A

Eα

)
/F

where F is the subgroup generated by the elements x− fαβ(x), for x ∈ Eα and α ≤ β in
A.

The direct limit E is equipped with group morphisms ια : Eα → E for every α ∈ A,
such that ιβ ◦ fαβ = ια for all α ≤ β in A. It enjoys the following universal property: if
sα : Eα → S for α ∈ A is a collection of group morphisms satisfying sβ ◦ fαβ = sα for all
α ≤ β in A, then there is a unique map s : E → S such that sα = s ◦ ια for all α ∈ A.

Lemma 9.4.3. Let (Eα) be a direct system of abelian groups indexed by the directed
set A, and let E its direct limit.

(i) We have E =
⋃
α∈A ια(Eα).

(ii) For all α ∈ A we have ker ια =
⋃
α≤β ker fαβ.

Proof. (i) : By construction, any element e ∈ E may be written as ια1
(e1) + · · ·+

ιαn(en) for some αi ∈ A and ei ∈ Eαi for i = 1, . . . , n. As A is directed, we may find
α ∈ A such that αi ≤ α for all i = 1, . . . , n. Then

e = ια1(e1) + · · ·+ ιαn(en) = ια(fα1α(e1) + · · ·+ fαnα(en))

belongs to ια(Eα).
(ii) : Certainly ker fαβ ⊂ ker ια for all α ≤ β in A. Conversely, let x ∈ ker ια. Then

we may find indices αi ≤ βi in A and elements xi ∈ Eαi for i = 1, . . . , n such that

(9.4.a) x =

n∑
i=1

(xi − fαiβi(xi)) ∈
⊕
γ∈A

Eγ .

Pick β ∈ A such that α ≤ β and βi ≤ β for all i = 1, . . . , n. The morphisms fγβ for
γ ≤ β in A define a morphism ϕβ :

⊕
γ≤β Eγ → Eβ . Taking the image of (9.4.a) under
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ϕβ yields

fαβ(x) =

n∑
i=1

(fαiβ(xi)− fβiβ ◦ fαiβi(xi)) = 0. �

Example 9.4.4. Let A be an abelian group. Let (A,≤) be a directed set, and Aα ⊂ A
a collection of subgroups such that Aα ⊂ Aβ whenever α ≤ β. Then the family Aα defines
a direct system, where the transition morphisms are the inclusions Aα ⊂ Aβ . It follows
from Lemma 9.4.3 that the natural group morphism lim

−→
Aα → A is injective, and its

image coincides with
⋃
α∈AAα.

Observe that if (Eα), (E′α) are direct systems of abelian groups indexed by the same
directed set A, and E′α → Eα for all α ∈ A are group morphisms compatible with the
transition maps, there is a unique group morphism lim

−→
E′α → lim

−→
Eα compatible with the

morphisms ια.

Proposition 9.4.5. Let A be a directed set, and (Eα), (E′α), (E′′α) direct systems of
abelian groups indexed by A. Assume given exact sequence of groups

E′α → Eα → E′′α

for all α ∈ A, compatibly with the transition morphisms. Then the induced sequence

lim
−→

E′α → lim
−→

Eα → lim
−→

E′′α

is exact.

Proof. By Lemma 9.4.3 (i), every element x ∈ lim
−→

Eα is represented by e ∈ Eα for

some α ∈ A. Let e′′ ∈ E′′α be the image of e. If the image of x in lim
−→

E′′α vanishes, then by

Lemma 9.4.3 (ii) there exists β ≥ α in A such that the image of e′′ vanishes in E′′β , which

implies that the image of e in Eβ is the image of an element e′ ∈ E′β , by the assumption

of exactness. The image of e′ in lim
−→

E′α defines the required preimage of x. �

Let now Cα be a cochain complex of abelian groups for each α ∈ A, where A is a
directed set. Assume given for each α ≤ β in A a morphism of complexes fαβ : Cα → Cβ ,
such that fαα = idCα for all α ∈ A, and fβγ ◦ fαβ = fαγ for all α ≤ β ≤ γ in A. Then
for each n ∈ Z the collection (Cnα) is an inverse system of abelian groups indexed by
A, and we may define a cochain complex of abelian groups C by setting Cn = lim

−→
Cnα

and dnC = lim
−→

dnCα for each n ∈ Z. There are natural morphisms of complexes of abelian

groups Cα → C for all α ∈ A.

Corollary 9.4.6. Let n ∈ Z. In the above situation, the induced morphisms Hn(Cα)→
Hn(C) yield an isomorphism of abelian groups

lim
−→

Hn(Cα)→ Hn(C).

Proof. Consider the subgroups of Cn

Zn = ker dnC ; Bn = im dn−1
C

as well as the subgroups of Cα, for α ∈ A,

Znα = ker dnCα ; Bnα = im dn−1
Cα

.
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Proposition 9.4.5 shows that the morphism lim
−→

Znα → Cn induces an isomorphism lim
−→

Znα →
Zn. The morphism dn−1

Cα
factors as Cn−1

α → Bnα → Cnα , hence dn−1
C factors a Cn−1 →

lim
−→

Bnα → Cn. By Proposition 9.4.5 the morphism Cn−1 → lim
−→

Bnα is surjective, and the

morphism lim
−→

Bnα → Cn is injective. It follows that the morphism lim
−→

Bnα → Cn induces

an isomorphism lim
−→

Bnα → Bn. We thus obtain a commutative diagram of abelian groups

0 // lim
−→

Bnα //

��

lim
−→

Znα

��

// lim
−→

Hn(Cα)

��

// 0

0 // Bn // Zn // Hn(C) // 0

where the left and middle vertical arrows are isomorphisms. The lower row is exact by
definition of the cohomology groups, and the upper row is exact by Proposition 9.4.5.
It follows from a diagram chase (the “5-lemma”) that the right vertical arrow is an
isomorphism, proving the corollary. �

Continuous cohomology. We now fix a profinite group Γ. Let A be a discrete
Γ-module.

Definition 9.4.7. Let n ∈ N. Let Cn(Γ, A) be the group of maps Γn → A which are
continuous for the discrete topology on A. Denoting by Γdis be the group Γ endowed with
the discrete topology, we may view Cn(Γ, A) as a subgroup of Cn(Γdis, A) (the group of
all maps Γn → A). The morphism dn : Cn(Γdis, A) → Cn+1(Γdis, A) (see (9.3.a)) maps
Cn(Γ, A) into Cn+1(Γ, A). We have thus constructed a cochain complex of abelian groups
C(Γ, A), and we denote by Hn(Γ, A) its cohomology groups.

Remark 9.4.8. As observed in Example 9.3.8 and Example 9.3.9, we recover the
cohomology groups previously defined for n = 0, 1, 2.

Proposition 9.4.9. An exact sequence of discrete Γ-modules

0→ A→ B → C → 0

induces an exact sequence of abelian groups

· · · → Hq−1(Γ, C)→ Hq(Γ, A)→ Hq(Γ, B)→ Hq(Γ, C)→ · · ·

Given a commutative diagram of discrete Γ-modules

0 // A

��

// B //

��

C //

��

0

0 // A′ // B′ // C ′ // 0

having exact rows, the induced diagram of abelian groups

· · · // Hq−1(Γ, C)

��

// Hq(Γ, A) //

��

Hq(Γ, B) //

��

Hq(Γ, C) //

��

· · ·

· · · // Hq−1(Γ, C ′) // Hq(Γ, A′) // Hq(Γ, B′) // Hq(Γ, C ′) // · · ·

is commutative.
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Proof. This will follow from Proposition 9.2.6 once we have proved that the se-
quences of cochain complexes

0→ Cn(Γ, A)→ Cn(Γ, B)→ Cn(Γ, C)→ 0

are exact. The only nontrivial point is the surjectivity of the last morphism. To prove this,
choose a map (not a group morphism!) C → B such that the composite C → B → C is the
identity. This map is continuous for the discrete topologies (as is any map), hence induces
a map Cn(Γ, C)→ Cn(Γ, B) such that the composite Cn(Γ, C)→ Cn(Γ, B)→ Cn(Γ, C)
is the identity. This concludes the proof. �

Proposition 9.4.10. Let A be a directed set, and Uα for α ∈ A an inverse system of
open normal subgroups of Γ (where transition maps are the inclusions). Assume that each
open normal subgroup of Γ contains Uα for some α ∈ A. Let A be a discrete Γ-module,
and for each α ∈ A let Aα ⊂ AUα be a discrete Γ-submodule. Assume that Aα ⊂ Aβ for
each α ≤ β in A, and that A =

⋃
α∈AAα.

Then there are natural identifications

lim
−→

Cn(Γ/Uα, Aα) = Cn(Γ, A) and lim
−→

Hn(Γ/Uα, Aα) = Hn(Γ, A).

Proof. We may view Cn(Γ/Uα, Aα) as a subgroup of Cn(Γdis, A), and identify
lim
−→

Cn(Γ/Uα, Aα) with
⋃
α C

n(Γ/Uα, Aα) (Example 9.4.4). By Lemma 4.2.14, every

f ∈ Cn(Γ, A) lies in Cn(Γ/Uβ , A
Uβ ) for some β ∈ A. Since the image of f is fi-

nite (because Γ/Uβ is finite), it is contained in Aα for some β ≤ α. This proves that⋃
α C

n(Γ/Uα, Aα) = Cn(Γ, A), so that lim
−→

Cn(Γ/Uα, Aα) = Cn(Γ, A). Since this iden-

tification is compatible with the coboundary morphisms, we may conclude using Corol-
lary 9.4.6. �

Let H ⊂ Γ be a closed subgroup and A a discrete Γ-module. The natural morphisms
Cq(Γ, A) → Cq(H,A) are compatible with the coboundary morphisms, hence induce
morphisms in cohomology, for every q ≥ 0

ResΓ
H : Hq(Γ, A)→ Hq(H,A).

Observe that every open normal subgroup of H contains a subgroup of the form U∩H,
where U is an open normal subgroup of Γ (this follows from Lemma 4.2.5 (i)). Thus it

follows from Proposition 9.4.10 that ResΓ
H : Hq(Γ, A)→ Hq(H,A) may be identified with

the direct limit of the morphisms

(9.4.b) Res
Γ/U
H/(U∩H) : Hq(Γ/U,AU )→ Hq(H/(U ∩H), AU ),

where U runs over the open normal subgroups of Γ.

Proposition 9.4.11. Let H ⊂ Γ be a closed subgroup and A a discrete Γ-module. As-
sume that for each open normal subgroup U of Γ, the map AU → AU given by multiplica-
tion by [Γ/U : H/(U ∩H)] is bijective. Then the morphism ResΓ

H : Hq(Γ, A)→ Hq(H,A)
is injective for every q.

Proof. Since each morphism (9.4.b) is injective by Corollary 9.3.18, the statement
follows from Proposition 9.4.5 (in view of observation just above). �

Let now B be a H-module. We let MΓ
H(B) be the set of continuous maps f : Γ→ B

such that f(hx) = hf(x) for all h ∈ H and x ∈ Γ, with the group structure given by
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pointwise operations on B, and the Γ-action given by (gf)(x) = f(xg) for g, x ∈ Γ.

Every element f ∈ MΓ
H(B) factors as Γ/U → B for some normal open subgroup U of Γ

(see Lemma 4.2.14), hence is fixed by U . We have thus constructed a discrete Γ-module

MΓ
H(B). Observe that MΓ

H(B) is naturally a Γdis-submodule of MΓdis

Hdis
(B). We define a

morphism of H-modules

ρ : MΓ
H(B)→ B ; f 7→ f(1).

Proposition 9.4.12 (Shapiro’s Lemma — profinite version). Let H ⊂ Γ be a closed
subgroup and B a H-module. Then for every q the composite

Hq(Γ,MΓ
H(B))

ResΓ
H−−−→ Hq(H,MΓ

H(B))
ρ∗−→ Hq(H,B)

is bijective.

Proof. Let U be an open normal subgroup of Γ, and let f ∈ MΓ
H(B). Then f ∈

MΓ
H(B)U if and only if f : Γ → B factors through the quotient Γ/U . Assume that

f ∈ MΓ
H(B)U , and set V = U ∩H. For any u ∈ V and x ∈ Γ we have v = x−1ux ∈ U ,

hence

f(x) = (vf)(x) = f(ux) = uf(x),

proving that the image of f is contained in BV . This yields an identification, as Γ/U -
modules

M
Γ/U
H/V (BV ) = MΓ

H(B)U .

We may thus view the morphism ρ : MΓ
H(B) → B as the direct limit of the morphisms

ρ : M
Γ/U
H/V (BV )→ BV considered in §9.3. Now each composite

Hq(Γ/U,M
Γ/U
H/V (BV ))

Res
Γ/U

H/V−−−−−→ Hq(H/V,M
Γ/U
H/V (BV ))

ρ∗−→ Hq(H/V,BV )

is an isomorphism by Proposition 9.3.15, and the statement follows by passing to the
limit, in view of Proposition 9.4.10. �

Assume now that H ⊂ Γ is an open subgroup, and let A be a discrete Γ-module. We
define a map

(9.4.c) µ : MΓ
H(A)→ A ; f 7→

∑
x∈X

xf(x−1),

where X ⊂ Γ is a set of representatives of Γ/H. We show as before (see just below
the formula (9.3.b)) that µ is a morphism of discrete Γ-modules which does not depend
on the choice of X. Alternatively, we may deduce these facts from §9.3, since the map
µ above factors as MΓ

H(A) ⊂ MΓdis

Hdis
(A) → A, where the last map is the morphism of

Γdis-modules µ defined in (9.3.c). Using Proposition 9.4.12 we obtain for each q the
corestriction morphism

CoresΓ
H : Hq(H,A) = Hq(Γ,MΓ

H(A))
µ∗−→ Hq(Γ, A).

Proposition 9.4.13. Let H be an open subgroup of Γ and A a discrete Γ-module.
Then for every q the composite

Hq(Γ, A)
ResΓ

H−−−→ Hq(H,A)
CoresΓ

H−−−−−→ Hq(Γ, A)

coincides with multiplication by [Γ : H].
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Proof. Consider the morphism of discrete Γ-modules σ : A→ MΓ
H(A) sending a ∈ A

to the map Γ→ A given by γ 7→ γa. Since ρ ◦ σ is the identity of the discrete H-module
A, it follows from Proposition 9.4.12 that the induced morphism

Hq(Γ, A)
σ∗−→ Hq(Γ,MΓ

H(A)) = Hq(H,A)

coincides with ResΓ
H . Now it follows from the formula (9.4.c) that the composite

A
σ−→ MΓ

H(A)
µ−→ A

is multiplication by [Γ : H]. �
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CHAPTER 10

Cohomological dimension

In the final chapter, we apply the homological methods of the previous chapter. We
first finish the proof of the identification of the Brauer group with the second cohomology
of Gm, using Shapiro’s Lemma. We deduce the existence of corestriction morphisms
(sometimes called transfer maps) for Brauer groups. When L/k is a finite separable
extension, this morphism associates to each finite-dimensional central simple L-algebra a
central division k-algebra.

Next we briefly discuss the notions of cohomological dimension of a profinite group,
and of a field. This concept encodes the complexity of a field from a certain cohomological
point of view. The first interesting case is that of fields of cohomological dimension at
most one. We provide several characterisation of such fields, including the fact that the
Brauer group of every of its separable extension vanishes.

The source of most classical examples of such fields are the so-called C1-fields, also
called “quasi-algebraically closed fields”. We prove that C1-fields have cohomological
dimension at most one (the converse does not hold, but seeing this requires some work).
Finite fields are C1-fields by Chevalley-Warning’s Theorem, which provides another reason
for the commutativity of finite division rings (Wedderburn’s Theorem proved earlier). The
chapter ends with a proof of Tsen’s Theorem (assuming basic algebraic geometry), which
asserts that fields of transcendence degree one over an algebraically closed field are C1-
fields, providing another interesting example of vanishing of Brauer groups. The third
important examples of C1-fields, which will not be discussed, are the complete discretely
valued fields with algebraically closed residue fields, for instance power series fields over
an algebraically closed field.

1. The Brauer group, III

Lemma 10.1.1. Let L/k be a finite Galois extension of degree n, and set G =
Gal(L/k). Then the connecting morphism of pointed sets

H1(G,PGLn(L))→ H2(G,L×)

arising from the sequence (7.3.a) is bijective.

Proof. As in Lemma 8.2.1, injectivity follows from the vanishing of H1(G,GLn(L))
by Hilbert’s Theorem 90 (Proposition 7.1.1). Let us denote by K the field L equipped
with the trivial G-action. Sending an element of a ∈ KL to the endomorphism x 7→ ax
of KL yields an injective morphism of L-algebras KL → EndL(KL). Choosing a basis of
K, we thus view KL as an L-subalgebra of Mn(L). This yields a commutative diagram
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of G-groups, having exact rows

1 // L× //

=

��

(KL)× //

��

(KL)×/L× //

��

1

1 // L× // GLn(L) // PGLn(L) // 1

and thus by Proposition 8.1.2 and Corollary 8.1.3 a commutative diagram of pointed sets,
where the upper row is exact

(10.1.a)

H1(G, (KL)×/L×) //

��

H2(G,L×)

=

��

// H2(G, (KL)×)

H1(G,PGLn(L)) // H2(G,L×)

Now, we may view KL = LK as a Galois G-algebra over K, which is split by Corol-
lary 5.5.13. It follows from Example 9.3.13 that (LK)× ' MG

1 (K×) as Z[G]-modules,
hence by Shapiro’s Lemma (Corollary 9.3.16), we have

H2(G, (KL)×) = H2(G, (LK)×) = 1.

In view of the diagram (10.1.a), we deduce that the map H1(G,PGLn(L))→ H2(G,L×)
is surjective. �

Proposition 10.1.2. The morphism of Proposition 8.2.3 is a group isomorphism

Br(k) ' H2(k,Gm).

Proof. Injectivity has been proved in Proposition 8.2.3. By Lemma 4.2.14, every
2-cocycle Gal(ks/k)×Gal(ks/k)→ k×s factors as a 2-cocyle α : Gal(L/k)×Gal(L/k)→
(k×s )Gal(ks/L) = L×, where L/k is a finite Galois extension. Let n = [L : k] and
G = Gal(L/k). By Lemma 10.1.1, the class of α in H2(G,L×) admits a preimage in
H1(G,PGLn(L)), whose image in H1(k,PGLn) is the required preimage of the class of
the original 2-cocyle in H2(k,Gm) (here we have used Remark 9.3.10). �

Corollary 10.1.3. If n is an integer prime to the characteristic of k, then the kernel
of the morphism Br(k)→ Br(k) given by multiplication by n is isomorphic to H2(k, µn).

Proof. The exact sequence of Lemma 7.1.4 yields an exact sequence of pointed sets

H1(k,Gm)→ H2(k, µn)→ H2(k,Gm)
n−→ H2(k,Gm).

SinceH1(k,Gm) = {∗} by Hilbert’s Theorem 90 (Proposition 7.1.1), the statement follows
from the identification of Proposition 10.1.2. �

Let L/k be a finite separable extension. The morphism

Cores
Gal(ks/k)
Gal(ks/L) : H2(Gal(ks/L), k×s )→ H2(Gal(ks/k), k×s )

yields, in view of Proposition 10.1.2, a group morphism

CoresL/k : Br(L)→ Br(k).
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Proposition 10.1.4. Let L/k be a finite separable extension. Then the composite

Br(k)→ Br(L)
CoresL/k−−−−−−→ Br(k)

is multiplication by [L : k].

Proof. This follows from Proposition 9.4.13. �

Remark 10.1.5. Proposition 10.1.4 yields a new proof of Theorem 8.3.1. Indeed by
Corollary 3.3.4, we find a separable extension L/k of degree ind(A) splitting A, so that
ind(A) · [A] = [L : k] · [A] = CoresL/k([AL]) = 0 by Proposition 10.1.4.

2. Cohomological dimension

In this section we fix a profinite group Γ. Let p be a prime number. When A is an
abelian group, let us denote by A{p} ⊂ A the subgroup of those a ∈ A such that pna = 0
for some integer n. We say that A is of p-primary torsion if A{p} = A, and that A has no
p-primary torsion if A{p} = 0. We say that a discrete Γ-module is of p-primary torsion
if the underlying abelian group is so.

Definition 10.2.1. We define the p-cohomological dimension of Γ as

inf{n ∈ N|Hq(Γ, A) = 0 for all q > n and discrete Γ-modules A of p-primary torsion},

and denoted by cdp(Γ) ∈ N ∪ {∞}. The cohomological dimension of Γ, denoted by
cd(Γ) ∈ N ∪ {∞}, is defined as the supremum of the p-cohomological dimensions of Γ,
where p runs over the prime numbers.

Observe that

cdp(Γ) = sup{q ∈ N|Hq(Γ, A) 6= 0 for some discrete Γ-module A of p-primary torsion}.

Lemma 10.2.2. Let H ⊂ Γ be a closed subgroup, and B a discrete H-module. If B is
of p-primary torsion, so is MΓ

H(B).

Proof. Every element f ∈ MΓ
H(B) is a continuous map Γ→ B. The image f(Γ) is

compact by Proposition 4.1.9 and discrete (as B is so), hence finite. Therefore f(Γ) ⊂ B
is annihilated by some power of p, hence so is f . �

Lemma 10.2.3. If n ∈ N is such that Hn+1(Γ, A) = 0 for all discrete Γ-modules A of
p-primary torsion, then cdp(Γ) ≤ n.

Proof. We prove thatHq(Γ, A) = 0 for all discrete Γ-modules A of p-primary torsion
when q > n. We proceed by induction on q, the case q = n + 1 being the assumption.
Let A be a discrete Γ-module of p-primary torsion. The map σ : A → MΓ

1 (A) sending
a ∈ A to the map Γ → A given by γ 7→ γa is an injective group morphism, allowing us
to view A as a discrete Γ-submodule of MΓ

1 (A). Since the discrete Γ-module MΓ
1 (A) is

of p-primary torsion (Lemma 10.2.2), so is its quotient Q = MΓ
1 (A)/A. Part of the long

exact sequence of Proposition 9.4.9 reads

Hq−1(Γ, Q)→ Hq(Γ, A)→ Hq(Γ,MΓ
1 (A))

Since Hq(Γ,MΓ
1 (A)) = Hq(1, A) = 0 by Shapiro’s Lemma (Proposition 9.4.12), and

Hq−1(Γ, Q) = 0 by induction, we conclude that Hq(Γ, A) = 0, as required. �
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Lemma 10.2.4. Let Γ be a pro-p-group and A a discrete Γ-module of p-primary tor-
sion. If A 6= 0, then A admits a discrete Γ-submodule isomorphic to Z/p with trivial
Γ-action.

Proof. Let a be a nonzero element of A, and U an open normal subgroup of Γ acting
trivially on a. The set E = {γa, γ ∈ Γ} is finite, since it admits a transitive action of the
finite group Γ/U . The subgroup B ⊂ A generated by E is a discrete Γ-submodule, and
the Γ-action on B factors through the finite quotient G = Γ/U . The assumption that A
is of p-primary torsion implies that B is finite and that |B| is a power of p. Since G is
a finite p-group and B 6= 0, it follows that BG 6= 0 (otherwise B would be the disjoint
union of {0} and nontrivial orbits of the p-group G, which have cardinality divisible by
p). Let b be a nonzero element of BG, and n the smallest integer such that pnb = 0. Then
pn−1b generates a subgroup of BG isomorphic to Z/p, which is a discrete Γ-submodule of
A having trivial Γ-action. �

Lemma 10.2.5. Let Γ be a pro-p-group. Consider Z/p as a discrete Γ-module with
trivial action. If n ∈ N is such that Hn+1(Γ,Z/p) = 0 then cdp(Γ) ≤ n.

Proof. Let A be a discrete Γ-module of p-primary torsion. By Lemma 10.2.3, it will
suffice to prove that Hn+1(Γ, A) = 0. Assume that Hn+1(Γ, A) 6= 0. We order the set S
of discrete Γ-submodules of A by inclusion. If (Aα) is a totally ordered subset of S, then
B =

⋃
αAα is a discrete Γ-module, and we have by Proposition 9.4.10

Hn+1(Γ, B) = lim
−→

Hn+1(Γ, Aα).

Thus if Hn+1(Γ, Aα) = 0 for all α, we have Hn+1(Γ, B) = 0. Applying Zorn’s lemma,
we obtain a maximal discrete Γ-submodule B of A such that Hn+1(Γ, B) = 0. Then
A 6= B. By Lemma 10.2.4, the discrete Γ-module A/B contains a discrete Γ-submodule
isomorphic to Z/p. This yields a discrete Γ-submodule C of A fitting into an exact
sequence of discrete Γ-modules

0→ B → C → Z/p→ 0.

Part of the associated long exact sequence of Proposition 9.4.9 reads

Hn+1(Γ, B)→ Hn+1(Γ, C)→ Hn+1(Γ,Z/p).

The extreme terms vanish, hence so does the middle one, contradicting the maximality
of B. �

Lemma 10.2.6. Let H ⊂ Γ be a closed subgroup.

(i) We have cdp(H) ≤ cdp(Γ).
(ii) If for each open normal subgroup U of Γ, the index [Γ/U : H/(U ∩H)] is prime to

p, then cdp(H) = cdp(Γ).

Proof. (i): LetB be a discreteH-module of p-primary torsion such thatHq(H,B) 6=
0. Then C = MΓ

H(B) is a discrete Γ-module of p-primary torsion (Lemma 10.2.2) such
that Hq(Γ, C) 6= 0 by Shapiro’s Lemma (Proposition 9.4.12).

(ii): Let A be a discrete Γ-module of p-primary torsion such that Hq(Γ, A) 6= 0. It
follows from Proposition 9.4.11 that Hq(Γ, A)→ Hq(H,A) is injective, hence Hq(Γ, A) 6=
0. �
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The additive version of Hilbert’s Theorem 90 (Proposition 7.2.1) admits a gener-
alisation to cohomology groups of higher degrees, given just below. This contrasts
with the usual (multiplicative) version of this theorem (Proposition 7.1.1), since already
H2(k,Gm) = Br(k) can be nontrivial (Proposition 10.1.2).

Proposition 10.2.7. We have Hq(k,Ga) = 0 for all q ≥ 1.

Proof. Let L/k be a finite Galois extension and G = Gal(L/k). Let K be the field
L with trivial G-action. Then the Galois G-algebra LK over K is split (Corollary 5.5.13),

hence LK ' MG
1 (K) as Z[G]-modules (Example 9.3.13), so that Hq(G,LK) = 0 by

Shapiro’s Lemma (Corollary 9.3.16). Now the k-vector space k is a direct summand of K,
hence the Z[G]-module L is a direct summand of LK . It follows that the group Hq(G,L)
is a direct summand of Hq(G,LK) = 0 (see Remark 9.3.5), hence vanishes. Passing to
the limit over all such L yields the result. �

Remark 10.2.8. The normal basis theorem asserts that, in fact, we have L ' MG
1 (k)

as Z[G]-module, when L/k is a finite Galois extension and G = Gal(L/k).

Corollary 10.2.9. Let k be a field of characteristic p > 0. Then cdp(Gal(ks/k)) ≤ 1.

Proof. Let P be a pro-p-Sylow subgroup of Gal(ks/k) (see Proposition 4.2.10).
Then cdp(Gal(ks/k)) = cdp(P ) by Lemma 10.2.6 (ii). Replacing k with (ks)

P , we may
thus assume that Gal(ks/k) is a pro-p-group.

The exact sequence of k-groups of Lemma 7.2.2 yields an exact sequence

H1(k,Ga)→ H2(k,Z/p)→ H2(k,Ga).

The extreme terms vanish by Proposition 10.2.7, hence so does the middle one, which
proves the statement by Lemma 10.2.5. �

Proposition 10.2.10. Let p be a prime number. The following are equivalent.

(i) For all separable field extensions K/k, the group Br(K) has no p-primary torsion.
(ii) The norm map NL/K : L× → K× is surjective for all separable field extensions K/k

and Galois extensions L/K such that [L : K] = p.

If the characteristic of k is not equal to p, these conditions are equivalent to:

(iii) We have cdp(Gal(ks/k)) ≤ 1.

Proof. (i) ⇒ (ii) : Let Q = K×/NL/K(L×). We may view L as a Galois Z/p-
algebra over K (Example 5.5.7), so that Q injects into Br(K) by Proposition 7.4.11.
Moreover we have xp = NL/K(x) for any x ∈ K, which implies that Q is of p-primary

torsion. By (i) the group Q is trivial, which means that NL/K : L× → K× is surjective.
(ii) ⇒ (i) : We may assume that K = k. Let E/k be as in Lemma 4.3.16. Since

every finite subextension of E/k has degree prime to p, it follows from Lemma 3.5.9 and
Corollary 8.3.3 that for each element x ∈ Br(E/k) there exists an integer m prime to p
such that mx = 0. This implies that Br(E/k) has no p-primary torsion.

We now prove that Br(E) = 0, which will imply that Br(k) = Br(E/k) has no p-
primary torsion, as required. If Br(E) 6= 0, there exists a finite Galois extension L/E
such that Br(L/E) 6= 0. Let us choose L/E minimal with this property, in the sense
that Br(F/E) = 0 for all Galois subextensions F/E of L/E such that F 6= L. Since
Gal(L/E) is a nontrivial finite p-group (by Lemma 4.3.16), it contains a normal subgroup
H isomorphic to Z/p. Then F = LH is a Galois extension of E. Since Gal(L/F ) ' Z/p, it
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follows from (ii) and Theorem 7.4.13 that Br(L/F ) = 0. Therefore Br(L/E) = Br(F/E),
contradicting the choice of L.

(iii) ⇒ (i) : If a ∈ Br(k) is such that pna = 0 for some integer n, it is the image
of an element of H2(k, µpn) = H2(Gal(ks/k), µpn(ks)) by Corollary 10.1.3. The discrete
Gal(ks/k)-module µpn(ks) is of p-primary torsion, hence H2(Gal(ks/k), µpn(ks)) = 0 by
(iii), and thus a = 0.

(i) ⇒ (iii) : Let P be a pro-p-Sylow subgroup of Gal(ks/k) (see Proposition 4.2.10).
Then cdp(Gal(ks/k)) = cdp(P ) by Lemma 10.2.6 (ii). Replacing k with (ks)

P , we may
thus assume that Gal(ks/k) is a pro-p-group. Let us write Xp − 1 = (X − 1)Q ∈ k[X],
where Q ∈ k[X]. Then Q is a separable polynomial of degree p − 1. We claim that Q
has a root in k. Indeed, otherwise ks/k would contain a subextension L/k such that
1 < [L : k] < p. The index of the open subgroup Gal(ks/L) of Gal(ks/k) is a power of
p (because Gal(ks/k) is a pro-p-group), and coincides with [L : k] (by Theorem 4.3.11),
contradicting the relations 1 < [L : k] < p.

Therefore k must contain a root of unity of order p (a root of Q), so that Z/p ' µp as
k-groups. Since H2(k, µp) = 0 by (i) and Corollary 10.1.3, it follows that H2(k,Z/p) = 0,
which implies that cdp(Gal(ks/k)) ≤ 1 by Lemma 10.2.5. �

Proposition 10.2.11. The following are equivalent:

(i) We have cd(Gal(ks/k)) ≤ 1, and if k is of characteristic p > 0 the group Br(K) has
no p-primary torsion for every separable extension K/k.

(ii) For every separable extension K/k, we have Br(K) = 0.
(iii) For every separable extension K/k, and every finite Galois extension L/K, the norm

map NL/K : L× → K× is surjective.

Proof. Let K/k be a separable extension. We claim that Br(K) = 0 if and only
Br(K) has no p-primary torsion for every prime p. Indeed by Theorem 8.3.1 for any
x ∈ Br(K), there exists a nonzero element n ∈ N such that nx = 0. Let us assume that n
is chosen minimal. If x 6= 0, then we may write n = pm for some prime p and integer m.
Then mx ∈ Br(K){p}, hence vanishes if Br(K) has no p-primary torsion, contradicting
the minimality of n. This proves the claim.

In view of Proposition 10.2.10 and Corollary 10.2.9, it will thus suffice to prove
that the condition (iii) holds if it holds under the additional assumption that [L : K] is
prime. First assume that G = Gal(L/K) is a p-group for some prime p, and proceed by
induction on [L : K], the case [L : K] = 1 being trivial. If [L : K] > 1, there exists a
normal subgroup H ⊂ G such that G/H ' Z/p. Let E = LH . Then the extension E/K
is Galois and Gal(E/K) ' Z/p, hence NE/K : E× → K× is surjective by assumption.

By the induction hypothesis NL/E : L× → E× is also surjective. By transitivity of the

norm maps (Corollary 5.3.4) we deduce that NL/K : L× → K× is surjective, concluding
the inductive proof.

We now return to the general case, when Gal(L/K) is arbitrary. Let n = [L : K]
and x ∈ K×. Then there exists an integer m > 0 such that xm ∈ NL/K(L×) (because
xn = NL/K(x)). Let us pick m minimal. If m > 1, then m = pu for some prime number
p and integer u. Let H be a p-Sylow subgroup of Gal(L/K), and consider the subfield
E = LH . Let d = [E : K] and y = xu ∈ K×. By the case considered above, we know
that NL/E : L× → E× is surjective. Thus y ∈ NL/E(L×) ⊂ E×. Using the transitivity of
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the norm maps (Corollary 5.3.4) we obtain

yd = NE/K(y) ∈ NE/K ◦NL/E(L×) = NL/K(L×).

Since yp = xm ∈ NL/K(L×) and d is prime to p, we deduce that y ∈ NL/K(L×). As y = xu

with u < m, this contradicts the minimality of m. Thus m = 1 and x ∈ NL/K(L×). �

Definition 10.2.12. We say that the field k has dimension ≤ 1 if it satisfies the
conditions of Proposition 10.2.11.

Remark 10.2.13. Note that if the field k is perfect, then k has dimension ≤ 1 if and
only if the profinite group Gal(k/ks) has cohomological dimension ≤ 1. This follows from
the fact that Br(k) has no p-primary torsion when k is a perfect field of characteristic p
(see Proposition 8.3.4).

3. C1-fields

Definition 10.3.1. The field k is called a C1-field if for every homogeneous polyno-
mial P ∈ k[X1, . . . , Xn] of degree d < n, there exist x1, . . . , xn ∈ k such that P (x1, . . . , xn) =
0 and at least one xi is nonzero.

Definition 10.3.2. Let R → S be a morphism of commutative rings. Assume that
the R-module S is free of finite rank. For any s ∈ S, denote by ls : S → S the map given
by x 7→ sx, and define NS/R(s) = det(ls) ∈ R.

Lemma 10.3.3. In the situation of Definition 10.3.2, let e1, . . . , er be an R-basis of
S. Then there exists a homogeneous polynomial D of degree r having coefficients in R,
and such that for any s1, . . . , sr ∈ R we have

NS/R(s1e1 + · · ·+ srer) = D(s1, . . . , sr).

Proof. Set s = s1e1 + · · · + srer. The determinant of a matrix in Mr(R) is a
homogeneous polynomial of degree r in the coefficients of the matrix, with coefficients in
R (this follows for instance from the Leibniz formula). The coefficients of the matrix in
Mr(R) of the endomorphism ls (say in the basis e1, . . . , er) are R-linear combinations of
the elements s1, . . . , sr. The statement follows. �

Lemma 10.3.4. Let R → S be a morphism of commutative k-algebras such that the
R-module S is free of finite rank. Let ϕ : B → k be a morphism of commutative k-algebras.
Then the following diagram commutes

S ⊗k B
idS ⊗ϕ //

N(S⊗kB)/(R⊗kB)

��

S

NS/R

��
R⊗k B

idR⊗ϕ // R

Proof. Let x ∈ S ⊗k B. Let e1, . . . , er be a basis of the R-module S. Let M ∈
Mr(R) be the matrix of l(idS ⊗ϕ)(x) : S → S in that basis, and N ∈ Mr(R ⊗k B) be the
matrix of lx : S ⊗k B → S ⊗k B in the basis e1 ⊗ 1, . . . , er ⊗ 1. Then M is the image
of N under the morphism Mr(R ⊗k B) → Mr(R) induced by by the ring morphism
idR⊗ϕ. Since the determinant of matrices commutes with morphisms of commutative
rings (being given by a universal polynomial in the coefficients of the matrix), it follows
that (idR⊗ϕ)(detN) = detM . This proves the lemma. �
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Lemma 10.3.5. If k is a C1-field, then so is every algebraic field extension of k.

Proof. Let L/k be an algebraic extension, and f ∈ L[X1, . . . , Xn] a homogeneous
polynomial of degree d < n. While searching for a nonzero element (x1, . . . , xn) ∈ Ln

such that P (x1, . . . , xn) = 0, we may replace L with the subextension of k generated
by the finitely many coefficients of f , and thus assume that L/k is finite. Let e1, . . . , er
be a k-basis of L. Consider the variables Yi,j for i ∈ {1, . . . , r} and j ∈ {1, . . . , n}, and
denote the polynomial k-algebra (resp. L-algebra) in these variables by k[Y ] (resp. L[Y ]).
Consider the polynomial

(10.3.a) g =

r∑
i=1

giei = f
( r∑
i=1

eiYi,1, . . . ,

r∑
i=1

eiYi,n

)
∈ L[Y ],

where each gi ∈ k[Y ] is homogeneous of degree d. Then NL[Y ]/k[Y ](g) is a homogeneous
polynomial of degree r in the variables g1, . . . , gr by Lemma 10.3.3, hence a homogeneous
polynomial of degree dr in the nr variables Y1,1, . . . , Yr,n. Since dr < nr and k is a
C1-field, it follows that there exist elements y1,1, . . . , yr,n ∈ k not all zero such that

(10.3.b) 0 =
(

NL[Y ]/k[Y ](g)
)
(y1,1, . . . , yr,n).

Applying Lemma 10.3.4 to the morphism ϕ : k[Y ] → k given by Yi,j 7→ yi,j for i ∈
{1, . . . , r} and j ∈ {1, . . . , n}, we obtain(

NL[Y ]/k[Y ](g)
)
(y1,1, . . . , yr,n) = NL/k(g(y1,1, . . . , yr,n)).

This element vanishes by (10.3.b), which implies that g(y1,1, . . . , yr,n) = 0 (see Lemma 5.3.2).
For j ∈ {1, · · · , n}, let zj = e1y1,j + · · ·+ eryr,j ∈ L. Using (10.3.a), we conclude that

0 = g(y1,1, . . . , yr,n) = f
( r∑
i=1

eiyi,1, . . . ,

r∑
i=1

eiyi,n

)
= f(z1, . . . , zn) ∈ L,

where at least one of z1, . . . , zn ∈ L is nonzero. �

Proposition 10.3.6. If k is a C1-field, then k has dimension ≤ 1 (in the sense of
Definition 10.2.12).

Proof. By Lemma 10.3.5, it will suffice to prove that NL/k : L× → k× is surjective

when L/k is a finite Galois extension. Let a ∈ k×, and choose a k-basis e1, . . . , ed of L.
Let us write k[X] = k[X1, . . . , Xd] and L[X] = L[X1, . . . , Xd]. Then the polynomial in
d+ 1 variables

P = aY d −NL[X]/k[X]

( d∑
i=1

Xiei

)
∈ k[Y,X1, . . . , Xd],

is homogeneous of degree d by Lemma 10.3.3. Since k is a C1-field, we find elements
y, x1, . . . , xd ∈ k which are not all zero and satisfy P (y, x1, . . . , xd) = 0. Applying
Lemma 10.3.4 to the morphism ϕ : k[Y,X1, . . . , Xd]→ k given by Y 7→ y and Xi 7→ xi for
i = 1, . . . , d, we obtain ayd = NL/k(x), where x = x1e1 + · · · + xded ∈ L. If y = 0, then

NL/k(x) = 0, hence x = 0 (see Lemma 5.3.2). Thus y 6= 0, and NL/k(xy−1) = a. �

Proposition 10.3.7 (Chevalley–Warning). Every finite field is a C1-field.

Proof. This can be proved by elementary (and clever) manipulations, see e.g. [Ser73,
I,§2]. �
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Proposition 10.3.8 (Tsen). Assume that k is algebraically closed, and consider its
purely transcendental extension in one variable k(t). Then k(t) is a C1-field.

Proof. Let f ∈ k(t)[X1, . . . , Xn] a homogeneous polynomial of degree d < n. While
searching for a nonzero element (x1, . . . , xn) ∈ k(t)n such that f(x1, . . . , xn) = 0, we may
replace multiply f with any power of t, and thus assume that f ∈ k[t][X1, . . . , Xn]. Let
r be the maximal degree (as a polynomial in t) of a coefficient in k[t] of f . Since d < n,
we may find an integer N such that dN + r < n(N + 1). For each i = 1, . . . , n consider
the polynomial

Pi =

N∑
j=0

Xi,jt
j ∈ k[Xi,0, . . . , Xi,N ].

Then

f(P1, . . . , Pn) =

dN+r∑
l=0

fl(X1,0, . . . , Xn,N )tl,

where each fl is a homogeneous polynomial (of degree d). Since k is algebraically closed,
there exists elements x1,0, . . . , xn,N ∈ k not all zero and such that fl(x1,0, . . . , xn,N ) = 0
for all l = 0, . . . , dN+r (this follows from basic algebraic geometry, see e.g. [Har77, I.1.13
and I.7.2]: the intersection of a hypersurfaces in the projective space Pb is nonempty when
b ≥ a; here a = dN + r + 1 and b = n(N + 1)). �
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Exercises

Exercise 10.1. Let k be an algebraic closure of k. We first assume that k/k is finite
of prime order p, where p is unequal to the characteristic of k.

(i) Show that k contains a root of unity of order p.
(ii) Show that the extension k/k is generated by an element α such that a = αp ∈ k.

(iii) Show that Br(k/k) ' H2(k,Z/p) and k×/k×p ' H1(k,Z/p), and that each of these
groups is isomorphic to Z/p. (Hint: Use the computation of the cohomology of finite
cyclic groups.)

(iv) Deduce that Nk/k(k
×

) = k×p.

(v) Show that Nk/k(α) = (−1)p−1a.

(vi) Deduce that p = 2, that −1 is not a square in k, and that k ' k[X]/(X2 + 1).

We now assume that k/k is finite (of possibly nonprime order) and that k has char-
acteristic zero.

(vii) Assume that −1 is a square in k. Show that k = k.
(viii) Assume that −1 is not a square in k. Show that k ' k[X]/(X2 + 1).
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