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Foreword

These are notes for a course given at the Technische Universität München in Sum-
mer 2022. The course is based on the book [Sam70] by Pierre Samuel. We follow this
reference very closely in certain sections, but also diverge somewhat in other sections.

Formally the prerequisites for this course are rather minimal: mostly familiarity with
rings, fields, modules, and basic linear algebra (say, over fields). We will occasionally use
the tensor product of modules, but only in the simple case of free modules. Familiarity
with localisation and Galois theory will be helpful, but not strictly required (at least until
the last part of the course). Basic analytic methods will also be used (Fubini’s Theorem,
Lebesgue measure on Rn).
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Introduction

In this introduction we provide some motivation for the general theory that will be
developed in this course. In particular, we will prove in this section the following result,
attributed to Girard in 1625: if p is an odd prime number, then

p = a2 + b2 for some a, b ∈ Z ⇐⇒ p = 1 mod 4.

This result is sometimes attributed instead to Fermat, and the first proof is due to Euler
in 1749. We will present a proof due to Dedekind which appeared in 1894, whose main
idea is to use the so-called Gaussian integers:

Definition 0.1. The ring of Gaussian integers Z[i] is the subring of C consisting of
the elements of the form a + bi with a, b ∈ Z (as usual i ∈ C denotes a chosen element
such that i2 = −1).

We define the norm function as the restriction of the map C→ N, α 7→ |α2|, namely:

N: Z[i]→ N, a+ bi 7→ a2 + b2.

Note that N(0) = 0, N(1) = 1, and that N(α) ≥ 1 whenever α 6= 0. Further, it is easy
to verify that

N(αβ) = N(α) N(β) for any α, β ∈ Z[i].

We recall that in a commutative ring R, an element is called a unit if it admits a
multiplicative inverse. The set of units is a group, denoted by R×.

Lemma 0.2. An element α ∈ Z[i] is a unit if and only if N(α) = 1.

Proof. Indeed, if α ∈ Z[i]×, we have

1 = N(1) = N(αα−1) = N(α) N(α−1),

hence we must have N(α) = 1. Conversely if N(α) = 1, write α = a + bi with a, b ∈ Z.
Then α = a− bi satisfies

αα = a2 + b2 = N(α) = 1,

and so α is the inverse of α. �

Remark 0.3. In fact, it is easy to see that Z[i]× = {1,−1, i,−i}.

Definition 0.4. A commutative (unital associative) ring A is called a principal ideal
domain if every ideal of A is of the form aA for some a ∈ A.

Example 0.5. Prominent examples of principal ideal domains are Z, and the poly-
nomial ring k[X] when k is a field.

Lemma 0.6. Let α, β ∈ Z[i], with β 6= 0. Then there exists elements γ, ρ ∈ Z[i] such
that

α = γβ + ρ and N(ρ) < N(β).
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Proof. Let us write α/β = x + iy ∈ C, with x, y ∈ R. Then we may find a, b ∈ Z
such that |x− a| ≤ 1/2 and |y − b| ≤ 1/2. Set γ = a+ bi ∈ Z[i], and ρ = α− βγ. Then

N(ρ) = |α− βγ|2 = |β|2 ·
∣∣∣α
β
− γ
∣∣∣2 = |β|2 · ((x− a)2 + (y − b)2) ≤ |β|

2

2
< N(β). �

Proposition 0.7. The ring Z[i] is a principal ideal domain.

Proof. Let I be an ideal of Z[i]. Let us pick a nonzero element β ∈ A such that
N(β) ∈ Nr {0} is minimal. Then for any α ∈ A, by Lemma 0.6 we may write α = γβ+ρ
with γ, ρ ∈ Z[i] and N(ρ) < N(β). By minimality of N(β), we must have ρ = 0, and thus
α = γβ. We have proved that I = β · Z[i]. �

Recall that an element x in a ring R is called irreducible if x 6∈ R× ∪ {0}, and for all
a, b ∈ R

x = ab =⇒ a ∈ R× or b ∈ R×.

Proposition 0.8 (Girard, Dedekind). Let p be an odd prime number. Then the
following conditions are equivalent:

(i) p is congruent to 1 modulo 4,
(ii) −1 is a square in Z/pZ,

(iii) p is not irreducible in Z[i],
(iv) p = a2 + b2 for some a, b ∈ Z.

Proof. (i)⇒ (ii) : The ring Z/pZ is a finite field, and so its group of units (Z/pZ)× is
cyclic (we will reprove this classical fact later) of order p−1. We thus have an isomorphism
(Z/pZ)× ' Z/(p−1)Z; the element −1 ∈ (Z/pZ)× corresponds to (p−1)/2 ∈ Z/(p−1)Z
(those are the unique elements of order 2). If p is congruent to 1 modulo 4, then (p−1)/2
is divisible by 2 in Z/(p− 1)Z, which means that −1 is a square in (Z/pZ)×.

(ii) ⇒ (iii) : If −1 is a square in Z/pZ, then we may find an integer x ∈ Z such that
p | x2 + 1 = (x + i)(x − i). We now assume that p is irreducible in Z[i], and come to
a contradiction. Let I ⊂ Z[i] be the ideal generated by p and x + i. As the ring Z[i]
is a principal ideal domain (Lemma 0.7), we have I = α · Z[i] for some α ∈ Z[i]. Then
α divides p in Z[i]. As p is irreducible in Z[i], the element α ∈ Z[i] is either a unit, or
divisible by p. But p does not divide x+ i in Z[i] (an element of Z divides a+ bi in Z[i]
if and only if it divides a and b; in our case b = 1), hence p does not divide α in Z[i]. We
deduce that α must be a unit in Z[i], and so I = Z[i]. In particular we may find elements
β, γ ∈ Z[i] such that

1 = pβ + (x+ i)γ ∈ Z[i].

Multiplying with x− i and using the relation (x+ i)(x− i) = p shows that x− i is divisible
by p in Z[i], a contradiction (this is the case b = −1 in the remark above).

(iii) ⇒ (iv) : Assume that p = αβ, where α, β ∈ Z[i] are not units. Then

p2 = N(p) = N(α) ·N(β) ∈ N.

Since by Lemma 0.2 we have N(α) 6= 1 and N(β) 6= 1, and as p is prime, we must have
p = N(α). Writing α = a+ bi with a, b ∈ Z, yields the required pair (a, b).

(iv) ⇒ (i) : Observe that for any x ∈ Z, we have

(0.a) x2 =

{
0 mod 4 if x = 0 mod 2,

1 mod 4 if x = 1 mod 2.
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Therefore for any a, b ∈ Z, the integer a2 +b2 is congruent modulo 4 to 0, 1 or 2. If a2 +b2

is an odd prime, the only possibility is 1 modulo 4. �

Remark 0.9. Beside the norm function, the trace function

Tr: Z[i]→ Z, a+ bi 7→ 2a

can be useful. In particular, for any α ∈ Z[i], we have

α2 − αTr(α) + N(α) = 0

(this may be verified using by a direct computation, writing α = a + bi). Thus the
elements of Z[i] are always the solutions of a monic polynomial equation with coefficients
in Z.
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CHAPTER 1

Basic commutative ring theory

All rings will be assumed unital, associative and commutative. When R is a ring, we
denote by R× the multiplicative group consisting of the invertible elements of R. When
A is a subring of B, we will sometimes say that A ⊂ B is a ring extension.

Let A be a ring. An A-algebra is a ring R equipped with a ring morphism ιR : A→ R.
When R,S are A-algebra, a ring morphism f : R→ S is called a morphism of A-algebras
if f ◦ ιR = ιS .

1. Prime and maximal ideals

Recall that a nonzero ring A is called a domain, or integral domain, if for every
x, y ∈ A we have

xy = 0 ∈ A =⇒ x = 0 or y = 0.

The fraction field K of a domain A is a field containing A, which is minimal (with respect
to field inclusions) among such fields. Its elements are the fractions a/b for a, b ∈ A with
b 6= 0, subject to the relations a/b = a′/b′ whenever ab′ = a′b. In particular every element
of K is of the form ab−1 with a, b ∈ A.

Let A be a ring. We recall that an ideal p of A is called prime if it satisfies any of
the following equivalent conditions:

(i) p 6= A, and for all x, y ∈ A such that xy ∈ p, we have x ∈ p or y ∈ p.
(ii) the ring A/p is a domain.

An ideal m of A is called maximal if it satisfies any of the following equivalent con-
ditions:

(i’) m 6= A, and for all ideals I of A such that m ⊂ I, we have m = I or A = I.
(ii’) the ring A/m is a field.

Remark 1.1.1. Since a field is a domain, every maximal ideal is prime. The converse
does not hold; for instance the zero ideal in Z is prime but not maximal.

We now prove a few lemmas on prime ideals that will be useful.

Lemma 1.1.2. Let A ⊂ B be a ring extension. If q is a prime ideal of B, then q ∩A
is a prime ideal of A.

Proof. Indeed, the morphism A/(q ∩ A) → B/q is injective, and B/q is a domain.
Thus A/(q ∩A) is a subring of domain, and therefore it is a domain. Equivalently q ∩A
is a prime ideal of A. �

Lemma 1.1.3. Let A be a ring, and p a prime ideal of A. If I1, . . . , In are ideals of
A such that I1 · · · In ⊂ p, then there exists i ∈ {1, . . . , n} such that Ii ⊂ p.
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Proof. Assume the contrary, so that p contains no Ii. Then there for each i ∈
{1, . . . , n} there exists an element ai ∈ Ii such that ai 6∈ p. Then a1 · · · an 6∈ p because p
is prime. But a1 · · · an ∈ I1 · · · In, a contradiction. �

The next lemma might seem similar, but will have somewhat deeper consequences:

Lemma 1.1.4 (Prime avoidance). Let I, p1, . . . , pn be ideals in a ring A. Assume that
the ideal pi is prime for i ≥ 3. If I ⊂ p1 ∪ · · · ∪ pn, then I ⊂ pi for some i ∈ {1, . . . , n}.

Proof. We assume that I is contained in no pi and find x ∈ I belonging to no pi.
This is clear for n ∈ {0, 1}. If n = 2, we find for i = 1, 2 elements xi ∈ I such that xi 6∈ pi.
We may assume that x1 ∈ p2 and x2 ∈ p1 (otherwise the statement is proved, by taking
x = x1 or x = x2). Then x = x1 + x2 works.

We now assume that n > 2, and proceed by induction on n. For each j = 1, . . . , n,
we can find by induction an element xj ∈ I which is in none of the ideals pi for i 6= j.
As above, we may assume that xj ∈ pj , for all j ∈ {1, . . . , n} (otherwise x = xj works).
Then we claim

x = xn + x1 · · ·xn−1 ∈ I
does the job (here x1 · · ·xn−1 denotes the product). Indeed assume that x ∈ pj for
some j ∈ {1, . . . , n}. If j 6= n, then x1 · · ·xn−1 ∈ pj (because xj ∈ pj), and thus
xn = x − x1 · · ·xn−1 ∈ pj , contradicting the choice of xn. If j = n, then x1 · · ·xn−1 =
x−xn ∈ pn, and as the ideal pn is prime by assumption (because n ≥ 3), we deduce that
xi ∈ pn for some i ∈ {1, . . . , n− 1}, contradicting the choice of xi. �

We will also need the so-called Chinese remainder theorem:

Lemma 1.1.5. Let A be a ring, and I1, . . . , In ideals of A such that Ii + Ij = A for
all i 6= j.

(i) We have
I1 · · · In = I1 ∩ · · · ∩ In.

(ii) The natural ring morphism

A/(I1 · · · In)→ (A/I1)× · · · × (A/In)

is bijective.

Proof. (i): Clearly I1 · · · In ⊂ I1∩· · ·∩In. We prove the other inclusion by induction
on n, the case n = 1 being trivial. Assume that n = 2. Pick a1 ∈ I1, a2 ∈ I2 such that
a1 + a2 = 1. Then for any x ∈ I1 ∩ I2 we have

x = x(a1 + a2) ∈ (I1 ∩ I2)I1 + (I1 ∩ I2)I2 ⊂ I1I2,
proving (i) for n = 2. Assume now that n ≥ 3. Let I = I1 · · · In−1. By induction, we
know that I = I1∩· · ·∩In−1. For each i ∈ {1, . . . , n−1}, as Ii+In = A, we find elements
xi ∈ Ii, yi ∈ In such that xi + yi = 1. Thus

x1 · · ·xn−1 = (1− y1) · · · (1− yn−1) = 1 mod In.

As x1 · · ·xn−1 ∈ I, this shows that In+ I = A, hence by the case n = 2 considered above,
we have

I1 ∩ · · · ∩ In = I ∩ In = IIn = I1 · · · In.
(ii): Consider the natural ring morphism

(1.1.a) A→ (A/I1)× · · · × (A/In) a 7→ (a mod I1, . . . , a mod In).
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Its kernel is I1 ∩ · · · ∩ In, hence it follows from (i) that the morphism of (ii) is injective.
For all i, j ∈ {1, . . . , n} with i 6= j, using the relations Ii + Ij = A we find elements
eij ∈ Ij such that eij = 1 mod Ii. We set, for all i ∈ {1, . . . , n}

ei =
∏
j 6=i

eij .

Then ei = 1 mod Ii, and ei ∈ Ij for all j 6= i. Now if (x1, . . . , xn) ∈ An, the element
n∑
i=1

eixi ∈ A

maps to (x1 mod I1, . . . , xn mod In) under the map (1.1.a). We have proved that the
map (ii) is surjective. �

2. Noetherian rings

Proposition 1.2.1. Let A be a ring, and M an A-module. The following conditions
are equivalent:

(i) every nonempty family of A-submodules of M admits a maximal element (for the
relation of inclusion),

(ii) if Pn for n ∈ N are A-submodules of M satisfying Pn ⊂ Pn+1 for all n, there exists
s ∈ N such that Pn = Ps for all n ≥ s,

(iii) every A-submodule of M is finitely generated.

Proof. (i) ⇒ (iii) : Let N be an A-submodule of M . Consider the set Σ of all
finitely generated A-submodules of M which are contained in N . The set Σ is nonempty,
because it contains the zero ideal, so by (i) we may find a maximal element N in the set Σ
(ordered by inclusion). Let x ∈ N . As N ′ ⊂ N ′ +Ax ⊂ N , we must have N ′ = N ′ +Ax
by maximality of N ′, and so x ∈ N ′. We have proved that N = N ′, and in particular the
A-module N is finitely generated.

(ii) ⇒ (i) : Let E be a nonempty set of A-submodules of M . If the set E has no
maximal element (for the relation of inclusion), we can find inductively elements Pn ∈ E
for all n ∈ N, in such a way that Pn ( Pn+1 for all n. This contradicts (ii).

(iii) ⇒ (ii) : Consider a family of A-submodules Pn of M , for n ∈ N, which satisfies
Pn ⊂ Pn+1 for all n ∈ N. Then P =

⋃
n∈N Pn is an A-submodule of M , it is thus finitely

generated by (iii), say by the elements x1, . . . , xm ∈ Pn. For s large enough, we have
x1, . . . , xm ∈ Ps, and so Ps = P . In particular for n ≥ s, we have Ps ⊂ Pn ⊂ P = Ps,
and so Pn = Ps. �

Definition 1.2.2. Let A be a ring. An A-module M will be called noetherian if it
satisfies the conditions of Proposition 1.2.1. A ring A is called noetherian if it is noetherian
as a module over itself.

Example 1.2.3. Let k be a field, and A a k-algebra. If A is of finite dimension as a
k-vector space, then the ring A is noetherian; indeed, a chain of ideals of A is in particular
a chain of k-vector spaces.

Proposition 1.2.4. Let A be a ring.

(i) Let f : M → P be a surjective morphism of A-modules. If the A-module M is
noetherian, then so is P .

(ii) If M and N are noetherian A-modules, then so is M ⊕N .
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Proof. (i): Consider a family of A-submodules Pn of P , for n ∈ N, such that
Pn ⊂ Pn+1 for all n ∈ N. For each n ∈ N, consider the A-submodule Mn = f−1Pn
in M . Then Mn ⊂ Mn+1 for all n ∈ N, and f(Mn) = Pn because f is surjective.
As M is noetherian we may find s ∈ N such that Mn = Ms for n ≥ s, and thus
Pn = f(Mn) = f(Ms) = Ps for n ≥ s. We have proved that P is noetherian.

(ii): Let Pn ⊂ M ⊕N for n ∈ N be a family of A-submodules such that Pn ⊂ Pn+1

for all n ∈ N. Consider the second projection π : M ⊕N → N . Then the family π(Pn) for
n ∈ N satisfies π(Pn) ⊂ π(Pn+1) for all n, and as N is a noetherian A-module, we find
an integer s ∈ N such that π(Pn) = π(Ps) for all n ≥ s.

Let n ≥ s, and x ∈ Pn. As π(Pn) = π(Ps), we find y ∈ Ps such that π(x) = π(y), or
equivalently z = x− y ∈M (we view M as an A-submodule of M ⊕N via m 7→ (m, 0)).
Thus x = z + y ∈M + Ps, and thus

(1.2.a) Pn ⊂M + Ps ⊂M ⊕N for all n ≥ s.

For m ∈ N, consider that A-submodule Qm = Pm+s/Ps of (M ⊕N)/Ps. It follows from
(1.2.a) for all m ∈ N, the A-submodule Qm is contained in (M + Ps)/Ps = M/(Ps ∩M).
But the A-module M/(Ps ∩M) is noetherian by (i) (because M is assumed noetherian),
and as Qm ⊂ Qm+1 for m ∈ N, we find r ∈ N such that Qm = Qr for m ≥ r. Thus
Pn/Ps = Pr+s/Ps for all n ≥ r + s, which implies that Pn = Pr+s. We have proved that
the A-module M ⊕N is noetherian. �

Corollary 1.2.5. Let A be a noetherian ring, and M a finitely generated A-module.
Then every A-submodule of M is finitely generated.

Proof. Let x1, . . . , xn be a set of generators for the A-module M . We define a
morphism of A-modules A⊕n →M by mapping the i-th element of the canonical A-basis
of A⊕n to xi, for i = 1, . . . , n. This morphism is surjective (because x1, . . . , xn generate
M), the A-module A⊕n is noetherian by Proposition 1.2.4 (ii) (applied n− 1 times), and
thus the A-module M is noetherian by Proposition 1.2.4 (i). This proves the corollary,
in view of Proposition 1.2.1. �

Proposition 1.2.6. Every principal ideal domain is a noetherian ring.

Proof. Indeed, every ideal is generated by a single element, and is thus finitely
generated. �

Lemma 1.2.7. Let A be a noetherian ring, and I an ideal of A. If I 6= A, then I is
contained in a maximal ideal.

Proof. The set of ideals of A containing I and distinct from A is nonempty (it
contains the element I), hence as A is noetherian it admits a maximal element. Such an
element is a maximal ideal of A which contains I. �

Remark 1.2.8. In fact, in any ring every proper ideal is contained in a maximal
ideal. This is a consequence of the so-called Zorn’s Lemma. We will not use this fact.

Lemma 1.2.9. Let A be a noetherian ring.

(i) Every ideal of A contains a product of prime ideals.
(ii) Assume that A is a domain. Then every nonzero ideal of A contains a product of

nonzero prime ideals of A.
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Repetitions are allowed in those products (i.e. the prime ideals need not be pairwise dis-
tinct), and those products are finite. Moreover, the ideal A itself is considered a product
of prime ideals (over the empty family).

Proof. In case (i), we let Φ be the set of ideals of A which contain no product of
prime ideals. In case (ii), we let Φ be the set of nonzero ideals of A which contain no
product of nonzero prime ideals. To prove the lemma, it suffices to show that the set Φ
is empty. So we assume Φ 6= ∅ and find a contradiction. As the ring A is noetherian, the
set Φ contains a maximal element I (for the inclusion of ideals). The ideal I is certainly
not prime, as otherwise it would be a product of prime ideals (resp. nonzero prime ideals
in case (ii)). Also A 6∈ Φ (because it is the product of the empty family of nonzero prime
ideals), and thus I 6= A. So we may find x, y ∈ A r I such that xy ∈ I. The ideals
I ′ = I+xA and I ′′ = I+yA contain strictly I, hence by the choice of the ideal I, each of
these ideals contains a product of prime ideals (resp. nonzero prime ideals). Then their
product I ′I ′′ contains a product of prime ideals (resp. nonzero prime ideals). Now

I ′I ′′ = (I + xA)(I + yA) ⊂ I2 + xI + yI + xyA ⊂ I,

which implies that the ideal I itself contains a product of prime ideals (resp. nonzero
prime ideals). We have obtained a contradiction. �

Lemma 1.2.10. Let A be a noetherian ring, and I an ideal of A. Then the set of prime
ideals of A which are minimal (for the relation of inclusion) among those containing I,
is finite.

Proof. For every ideal J of A, let us denote by M(J) the set of prime ideals of A,
which are minimal among those containing J . Let Φ be the set of ideals J of A such that
the set M(J) is infinite. It will suffice to prove that the set Φ is empty. So we assume
Φ 6= ∅ and find a contradiction. As the ring A is noetherian, the set Φ admits a maximal
element J . The ideal J is not prime, as otherwise the set M(J) = {J} would be finite.
Also J 6= A, because M(A) = ∅ is finite. Thus we may find x, y ∈ A r J such that
xy ∈ J . The ideals J + xA and J + yA both strictly contain J , hence M(J + xA) and
M(J + yA) are both finite (by the choice of the ideal J). Now for any p ∈M(J), we have
xy ∈ J ⊂ p, hence x ∈ p or y ∈ p (as the ideal p is prime). It follows that

M(J) ⊂M(J + xA) ∪M(J + yA)

(here we use the following fact: if p is a prime ideal of A minimal among those containing
J , and J ′ is an ideal of A such that J ⊂ J ′ ⊂ p, then p is minimal among the prime ideals
containing J ′). In particular the set M(J) must be finite, a contradiction. �

3. Modules over principal ideal domains

Let A be a ring, and n ∈ N. Recall that an A-module M is called free of rank n if it
there exist elements e1, . . . , en ∈M such that

M = Ae1 ⊕ · · · ⊕Aen.

The family (e1, . . . , en) is then called an A-basis of M .

Remark 1.3.1. Looking at the case A = 0 (and thus M = 0), it is clear that the
integer n such that M is free of rank n is not unique, if it exists. In fact, one may prove
that n is unique as soon as A 6= 0. The case when A is a principal ideal domain will
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follow from Lemma 1.3.8 below (whose arguments only use the fact that the ring A is a
domain; a different argument is required for the general case).

Theorem 1.3.2. Let A be a principal ideal domain. Let F be a free A-module of
rank n ∈ N, and M ⊂ F a submodule. Then the A-module M is free of rank q, for some
integer q ∈ N such that q ≤ n.

In addition there exist an A-basis (e1, . . . , en) of F , and elements a1, . . . , aq ∈ A such
that (a1e1, . . . , aqeq) is an A-basis of M , and ai | ai+1 for i = 1, . . . , q − 1.

Before proving Theorem 1.3.2, we discuss some classical consequences.

Corollary 1.3.3. Let A be a principal ideal domain, and M a finitely generated
A-module. Then

M ' (A/a1A)⊕ · · · ⊕ (A/anA),

for some a1, . . . , an ∈ A such that ai | ai+1 for i = 1, . . . , n− 1.

Proof. As M is finitely generated, we may find a surjective morphism of A-modules
f : A⊕n →M , for some integer n (by mapping the canonical basis of A⊕n to a system of
n generators of M). We apply Theorem 1.3.2 to the free A-module A⊕n of rank n, and
its submodule ker f . Then

M ' A⊕n/(ker f) = (Ae1 ⊕ · · · ⊕Aeq ⊕ · · · ⊕Aen)/(Aa1e1 ⊕ · · · ⊕Aaqeq)

' (A/a1A)⊕ · · · ⊕ (A/aqA)⊕A⊕(n−q).
Here we have used the following fact: if M1,M2 are A-modules and N1 ⊂ M1, N2 ⊂ M2

submodules, we have an isomorphism

(M1 ⊕M2)/(N1 ⊕N2) ' (M1/N1)⊕ (M2/N2).

To conclude, we set ai = 0 for i = q, . . . , n. �

When A is a ring, an A-module M is called torsion-free if for all a ∈ A and m ∈M
am = 0 =⇒ m = 0 or a = 0.

Corollary 1.3.4. Every finitely generated, torsion-free module over a principal ideal
domain is free of finite rank.

Proof. Let A be a principal ideal domain. Assume that M is a finitely generated,
torsion-free A-module. We apply Corollary 1.3.3 to obtain elements a1, . . . , an and an
isomorphism of A-modules ϕ : M

∼−→ (A/a1A)⊕· · ·⊕(A/anA). Assume that i ∈ {1, . . . , n}
is such that ai is not a unit in A. Then the element x = ϕ−1(0, . . . , 0, 1, 0, . . . , 0) ∈ M
(where the i-th entry is 1) is nonzero (because ai 6∈ A×) and satisfies aix = 0. As M
is assumed to be torsion-free, this implies that ai = 0. We have proved that each ai is
either a unit (in which case A/aiA = 0), or zero (in which case A/aiA = A). This implies
that M is free of rank r, for some r ∈ N (equal to the number of indices i such that
ai = 0). �

Proposition 1.3.5. Let A be an integral domain. Then any finite subgroup of A× is
cyclic.

Proof. Let G ⊂ A× be a finite subgroup. By Corollary 1.3.3, we have a group
isomorphism ϕ : G

∼−→ (Z/a1Z) × · · · × (Z/anZ), where a1, . . . , an ∈ Z, and ai | ai+1 for
i = 1, . . . , n−1. Set m = an. Since G is finite, the integer m is nonzero (otherwise G would
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contain a subgroup isomorphic to Z, and would thus be infinite). Since ai | m for each
i ∈ {1, . . . , n}, every element g ∈ G satisfies gm = 1 (to see this, consider the components
of the element ϕ(g)). On the other hand, the element x = ϕ−1(0, . . . , 0, 1) ∈ G has order
m.

Let now K be the fraction field of A. Then in the field K, the polynomial Xm − 1
has at most m distinct roots. We have just seen that every element of G is a root of
that polynomial, and so cardG ≤ m. The m-elements 1, x, . . . , xm−1 of G are pairwise
distinct (as x has order m), so that G must coincide with the set {1, x, . . . , xm−1}, and
in particular the group G is cyclic. �

The proof of Theorem 1.3.2 is quite long, so we break it into a series of lemmas. Let
us put ourselves in the situation of Theorem 1.3.2, and let K be the fraction field of A.
Let us choose a K-vector space V , such that F is an A-submodule of V . Such V does
exist, because the A-module F is free of rank n (for instance, pick a basis x1, . . . , xn of
F , set V = Kn and define the inclusion F ⊂ V by mapping xi to the i-th vector in the

canonical basis of Kn). When N ⊂ F is an A-submodule, we let Ñ be the K-vector space
spanned by N in V .

Lemma 1.3.6. Let N ⊂ F be an A-submodule. For all x ∈ Ñ , there exists a nonzero
element a ∈ A such that ax ∈ N .

Proof. Let us write

x =

s∑
i=1

λiyi, with λ1, . . . , λs ∈ K and y1, . . . , ys ∈ N.

For i ∈ {1, . . . , s}, write λi = ai/bi with ai, bi ∈ A. Then we may take a = b1 · · · bs. �

For an A-submodule N ⊂ F , we define

(1.3.a) r(N) = dimK Ñ .

Remark 1.3.7. The integer r(N) is sometimes called the rank of N (even when N
is not free). It is possible to give a (seemingly) more intrinsic definition using the tensor
product, by setting r(N) = dimK(N⊗AK). In particular, one may prove that the integer
(1.3.a) is independent of the choice of V .

Lemma 1.3.8. If the A-module N is free of rank m, then r(N) = m.

Proof. Let (e1, . . . , em) be an A-basis of N . Then the system (e1, . . . , em) ∈ V n

certainly generates the K-vector space Ñ . Assume that λ1, . . . , λn ∈ K are such that
m∑
i=1

λiei = 0 ∈ Ñ ⊂ V.

Letting b ∈ Ar{0} be such that bλi ∈ A for all i ∈ {1, . . . ,m} (the element b is a common
denominator of λ1, . . . , λm, see the proof of Lemma 1.3.6), we thus have

m∑
i=1

(bλi)ei = 0.

This equality holds in N ⊂ V , hence by A-linear independence of the system (e1, . . . , em),
we deduce that bλ1 = · · · = bλm = 0 in A, and thus in K. As b 6= 0, we obtain
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λ1 = · · · = λm = 0 in K. We have proved that the system (e1, . . . , em) is K-linearly

independent. Therefore (e1, . . . , em) is a K-basis of Ñ , and so dimK Ñ = m. �

Lemma 1.3.9. Let N1, N2 be A-modules such that N1⊕N2 is a submodule of F . Then

r(N1 ⊕N2) = r(N1) + r(N2).

Proof. Since the A-module N1 ⊕ N2 is generated by N1 ∪ N2, the K-vector space
˜N1 ⊕N2 is generated by Ñ1 ∪ Ñ2, and thus ˜N1 ⊕N2 = Ñ1 + Ñ1. To conclude the proof

of the lemma, it will suffice to prove that Ñ1 ∩ Ñ2 = 0 in V . If x ∈ Ñ1 ∩ Ñ2, then by
Lemma 1.3.6 we may find nonzero elements a1, a2 ∈ A such that a1x ∈ N1 and a2x ∈ N2.
Setting a = a1a2, we have ax ∈ N1 ∩ N2. Then ax = 0 in F , and thus also in V . This
yields x = a−1ax = 0 ∈ V . �

We will denote by HomA(F,A) the set of morphisms of A-modules F → A. Let
us choose ϕ ∈ HomA(F,A) such that the subset ϕ(M) is maximal (for the inclusion
relation); this is possible because those subsets are ideals of A, and the ring A is noetherian
(Proposition 1.2.6). As A is a principal ideal domain, we may find an element α ∈ A such
that ϕ(M) = αA.

Let us choose an A-basis (x1, . . . , xn) of F . Let π1, . . . , πn ∈ HomA(F,A) be the
system defined by the relations

πi(xj) = δij for 1 ≤ i, j ≤ n,

where we use the Kronecker symbol :

(1.3.b) δij =

{
1 if i = j,

0 if i 6= j.

Let us now assume that the A-module M is nonzero. Then we have πi(M) 6= 0 for
some i ∈ {1, . . . , n}, and in particular

(1.3.c) α 6= 0.

Recall that by definition αA = ϕ(M), so let us pick an element

e′ ∈M such that ϕ(e′) = α.

Lemma 1.3.10. For all ψ ∈ HomA(F,A), we have ψ(e′) ∈ αA.

Proof. As A is a principal ideal domain, the ideal of A generated by ψ(e′) and α
in A is of the form dA, for some d ∈ A. Let us write d = uψ(e′) + vα, with u, v ∈ A. Set
ρ = uψ + vϕ ∈ HomA(F,A), so that d = ρ(e′). We have

ϕ(M) = αA ⊂ dA = ρ(e′A) ⊂ ρ(M),

hence by maximality of ϕ, we deduce that ϕ(M) = ρ(M), and so αA = dA. As ψ(e′) ∈ dA,
the statement follows. �

Lemma 1.3.10 implies in particular that for each i ∈ {1, . . . , n}, we may find an
element bi ∈ A such that πi(e

′) = αbi. Set

e =

n∑
i=1

bixi ∈ F.
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Then e′ = αe (because their components in the basis (x1, . . . , xn) coincide). Now

α = ϕ(e′) = ϕ(αe) = αϕ(e).

Since the ring A is a domain, and α 6= 0 (see (1.3.c)), this implies that

ϕ(e) = 1.

Lemma 1.3.11. We have

(i) F = Ae⊕ kerϕ,
(ii) M = Ae′ ⊕ (M ∩ kerϕ).

Proof. Every element x ∈ F decomposes as

x = ϕ(x)e+ (x− ϕ(x)e),

which shows that F = Ae+ kerϕ. Let now y ∈ M . As ϕ(M) = αA, we have ϕ(y) = bα
for some b ∈ A. Then

y = be′ + (y − be′),
which shows that M = Ae′ + (M ∩ kerϕ).

Now, if a ∈ A is such that ae ∈ kerϕ, then 0 = aϕ(e) = a, and thus ae = 0.
This shows that Ae ∩ (kerϕ) = 0. As Ae′ ∩ (M ∩ kerϕ) ⊂ Ae ∩ (kerϕ), we also have
Ae′ ∩ (M ∩ kerϕ) = 0. �

Lemma 1.3.12. The A-module M is free of rank r, for some integer r ≤ n.

Proof. Let r = r(M). As M ⊂ F , we have M̃ ⊂ F̃ , and thus

r = r(M) = dimK M̃ ≤ dimK F̃ = r(F ).

Since r(F ) = n by Lemma 1.3.8, we have proved that r ≤ n. To conclude, we prove that
M is free of rank r.

We proceed by induction on the integer r. If r = 0, then M = 0 and the state-
ment is true. Assume that r > 0, so that M 6= 0. Pick ϕ, α, e, e′ as above. Then by
Lemma 1.3.11 (ii) and Lemma 1.3.9 we have r(M ∩ kerϕ) = r − 1. Therefore by induc-
tion the A-module M ∩ kerϕ is free of rank r − 1, and it follows from Lemma 1.3.11 (ii)
that the A-module M is free of rank r. �

Proof of Theorem 1.3.2. We proceed by induction on n. The statement is clear
when n = 0, so we assume that n > 0. We use the notation ϕ, α, e, e′ given above. We
know by Lemma 1.3.12, applied to the submodule kerϕ ⊂ F , that the A-modules kerϕ
is free of rank m ≤ n. By Lemma 1.3.11 (i), Lemma 1.3.8 and Lemma 1.3.9, we have

m = r(kerϕ) = r(F )− 1 = n− 1.

Thus we may apply the inductive hypothesis to the free A-module kerϕ and its submodule
M∩kerϕ. We obtain an A-basis (e2, . . . , en) of kerϕ, and nonzero elements a2, . . . , aq ∈ A
such that (a2e2, . . . , aqeq) is an A-basis of M ∩ kerϕ, and ai | ai+1 for i = 2, . . . , q − 1.
Here we may assume that q ≥ 1. Setting a1 = α and e1 = e, in view of Lemma 1.3.11 we
obtain that (e1, . . . , en) is an A-basis of F , and that (a1e1, . . . , aqeq) is an A-basis of M .

If q = 1, this concludes the proof of Theorem 1.3.2. Let us assume that q ≥ 2, and
prove that a1 | a2. Consider the linear form ξ ∈ HomA(F,A) defined by ξ(e1) = ξ(e2) = 1
and ξ(ei) = 0 for i ∈ {3, . . . , n}. Then ξ(e′) = α, hence ϕ(M) = αA ⊂ ξ(M). By
maximality of ϕ, it follows that αA = ξ(M). As ξ(a2e2) = a2 ∈ ξ(M), we have a1 = α |
a2. This concludes the proof of Theorem 1.3.2. �
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Finally, it will be convenient to record now the following complement to Theo-
rem 1.3.2:

Proposition 1.3.13. In the situation of Theorem 1.3.2, let K be the fraction field
of A. Let m ∈ N, and consider the integer q ∈ N given by Theorem 1.3.2. Then the
following conditions are equivalent:

(i) the A-module M is free of rank m,
(ii) the A-module F is a submodule of a K-vector space V , in which the set M spans a

K-subspace of dimension m,
(iii) q = m.

Proof. (i) ⇒ (ii): As observed above, the A-module F is always contained in some

K-vector space V . The K-subspace M̃ spanned by M in V has dimension r(M) (see
(1.3.a)), and we have r(M) = m by Lemma 1.3.8.

(ii) ⇒ (iii): The A-module M is free of rank q by Theorem 1.3.2. Using the given K-
vector space V to define the integer r(M), we have r(M) = m by definition (see (1.3.a)),
and it follows from Lemma 1.3.8 that m = q.

(iii) ⇒ (i): Certainly if (a1e1, . . . , aqeq) is an A-basis of M , then M is free of rank
q. �
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CHAPTER 2

Integral extensions

1. Integral dependence

Definition 2.1.1. Let A ⊂ R be a ring extension (by which we mean that A is
a subring of R). An element x ∈ R is called integral over A if there exist an integer
n ∈ Nr {0} and elements a0, . . . , an−1 ∈ A such that

xn + an−1x
n−1 + · · ·+ a0 = 0 ∈ B.

A polynomial P ∈ A[X] whose leading term is equal to 1 will be called monic. Thus
an element of R is integral over A if it is a zero of a monic polynomial with coefficients
in A.

Remark 2.1.2. When A ⊂ R is a ring extension, every element of a ∈ A is integral
over A, being a zero of the monic polynomial X − a.

Example 2.1.3. Consider the subring Z ⊂ R. Then
√

2 is integral over Z, while 1/2
is not.

Lemma 2.1.4. Let A ⊂ B be a ring extension. Assume that B is finitely generated
as an A-module. Then every finitely generated B-module is also finitely generated as an
A-module.

Proof. Let M be a finitely generated B-module. Let (b1, . . . , bn) be a finite system
of generators for the A-module B, and (m1, . . . ,ms) a finite system of generators for the
B-module M . Then

bimj for 1 ≤ i ≤ n and 1 ≤ j ≤ s
is a finite system of generators for the A-module M . �

Let A ⊂ R a ring extension. Let x ∈ R. We will denote by A[x] ⊂ R the A-subalgebra
generated by x. This is the smallest (for the inclusion) subring of R containing A and x.
Its elements are those elements of R of the form anx

n + · · · + a0, where a0, . . . , an ∈ A.
Despite the notation, the ring A[x] depends on the extension A ⊂ R, and will not neces-
sarily be isomorphic to the polynomial ring in one variable over A. We will reserve the
notation A[X] for the polynomial ring (using capital letters for indeterminates). More
generally, we will denote by A[x1, . . . , xn] the A-subalgebra of R generated by the ele-
ments x1, . . . , xn ∈ R.

We will need the following observation:

Lemma 2.1.5. Let R be a ring, and elements x1, . . . , xn ∈ R. Assume that 1 ∈ R
is an R-linear combination of the elements x1, . . . , xn. If M ∈ Mn(R) is such that the
column vector (x1, . . . , xn) lies in the kernel of M , then detM = 0 ∈ R.
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Proof. Consider the adjugate matrix N to M , i.e. the transpose of the comatrix
of M (the (i, j)-th entry of the comatrix is (−1)i+j times the determinant of the matrix
obtained from M by deleting the i-th row and j-th column). Then a basic property of
the determinant (the Laplace expansion) can be expressed as

NM = (detM) · In ∈Mn(R),

where In is the n×n identity matrix. We deduce that for each i ∈ {1, . . . , n}, the element
xi is annihilated in R by the element detM . Since by assumption we have

1 =

n∑
i=1

aixi, for some a1, . . . , an ∈ R,

it follows that

detM = (detM) · 1 = (detM)

n∑
i=1

aixi =

n∑
i=1

ai(detM)xi = 0. �

Proposition 2.1.6. Let A ⊂ R be a ring extension. Let x ∈ R. The following
conditions are equivalent:

(i) the element x is integral over A,
(ii) the A-module A[x] is finitely generated,

(iii) the subring A[x] is contained in a subring C of R, and C is finitely generated as an
A-module.

Proof. (i) ⇒ (ii) : By assumption, we have an equation

xn = −an−1xn−1 − · · · − a0, where a0, . . . , an−1 ∈ A.

Multiplying with xj for j ≥ 0, we obtain

xn+j = −an−1xn+j−1 − · · · − a0xj , where a0, . . . , an−1 ∈ A.

We deduce by induction on j that xn+j belongs to the A-submodule of R generated by
1, . . . , xn−1, for all j ∈ N. Since A[x] is the A-submodule of R generated by the elements
xi for i ∈ N, we have proved that A[x] is generated by 1, . . . , xn−1.

(ii) ⇒ (iii) : Take C = A[x].
(iii) ⇒ (i) : Let (y1, . . . , yn) be a generating system for the A-module C. As x ∈

A[x] ⊂ C, and C is a subring of R, we have xyi ∈ C for all i ∈ {1, . . . , n}. Therefore we
may write, for each i ∈ {1, . . . , n}

xyi =

n∑
j=1

aijyj , with aij ∈ A.

So we have equations in R, for i = 1, . . . , n

(2.1.a)

n∑
j=1

(δijx− aij)yj = 0,

where δij is the Kronecker symbol (see (1.3.b)).
Consider the n× n matrix M ∈ Mn(R), whose (i, j)-th coefficient is δijx− aij ∈ R.

Then (2.1.a) expresses the fact that the column vector (y1, . . . , yn) ∈ Rn lies in the kernel
of M . In addition 1 is an A-linear combination of the elements y1, . . . , yn, as is any
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element of C by the choice of the family y1, . . . , yn. Therefore by Lemma 2.1.5, we have
detM = 0. Expanding the determinant detM , we obtain

0 = detM = xn + an−1x
n−1 + · · ·+ a0, where a0, . . . , an−1 ∈ A.

(If P ∈ A[X] is the characteristic polynomial of the matrix (aij) ∈Mn(A), then detM =
P (x) ∈ R, and 1, an−1, . . . , a0 ∈ A are the coefficients of P .) This is the required equation
of integral dependence to prove that x is integral over A. �

Corollary 2.1.7. Let A ⊂ R be a ring extension. If x1, . . . , xn ∈ R are all integral
over A, then the A-module A[x1, . . . , xn] is finitely generated.

Proof. We proceed by induction on n, the case n = 0 being Remark 2.1.2. Assume
that n ≥ 1. Set A′ = A[x1, . . . , xn−1]. Then by induction the A-module A′ is finitely
generated. Since xn is integral over A, it is also integral over A′ (because A ⊂ A′).
Therefore by the implication (i) ⇒ (ii) in Proposition 2.1.6, the A′-module A′[xn] =
A[x1, . . . , xn] is finitely generated. We conclude using Lemma 2.1.4 that the A-module
A[x1, . . . , xn] is finitely generated. �

Proposition 2.1.8. Let A ⊂ R be a ring extension. If x, y ∈ R are both integral over
A, then so are xy and x+ y.

Proof. By Corollary 2.1.7, the subring A[x, y] ⊂ R is finitely generated as an A-
module. For z ∈ {xy, x+y}, the subring A[z] is contained in A[x, y], and so the statement
follows from the implication (iii) ⇒ (i) in Proposition 2.1.6. �

Definition 2.1.9. Let A ⊂ R be a ring extension. By Proposition 2.1.8 and Re-
mark 2.1.2, the set of elements of R that are integral over A is a subring of R, which
contains A by Remark 2.1.2, called the integral closure of A in R. If A coincides with its
integral closure in R, we say that A is integrally closed in R.

When A is a domain, the integral closure of A in its fraction field K is simply called
the integral closure of A, and we say that A is integrally closed when it coincides with its
integral closure.

Definition 2.1.10. A number field is a field extension of Q having finite degree.
When K is a number field, the integral closure of Z in K is called the ring of integers of
K, and will be denoted by OK ⊂ K.

Proposition 2.1.11. Every principal ideal domain is integrally closed.

Proof. Let A be a principal ideal domain, with fraction field K. Let x ∈ K be
integral over A. So we have an equation in K

(2.1.b) xn + an−1x
n−1 + · · ·+ a0 = 0,

with a0, . . . , an−1 ∈ A. Now we find elements a, b ∈ A with b 6= 0 such that x = ab−1.
The ideal aA + bA in the principal ideal domain A must be of the form dA, for some
d ∈ A. In particular a = da′ and b = db′ for some a′, b′ ∈ A. Replacing (a, b) with (a′, b′),
we may assume that d = 1, which means that there exist u, v ∈ A such that au+ bv = 1.
Multiplying (2.1.b) with bn and using the relation bx = a, we obtain in A ⊂ K, for some
n ≥ 1

an + an−1ba
n−1 + · · ·+ a0b

n = 0,

and therefore
an = b(−an−1an−1 − · · · − a0bn−1).
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Thus b divides an. It follows that b divides

anun = (au)n = (1− bv)n = 1 mod bA,

and thus b divides 1, which means that b ∈ B×. This implies that a = ab−1 ∈ A ⊂ K. �

Remark 2.1.12. In particular, it follows from Proposition 2.1.11 that the domain Z
is integrally closed (in Q), a fact the will be used repeatedly.

Definition 2.1.13. Let A ⊂ R be a ring extension. If every element of R is integral
over A, we say that R is integral over A, or that the extension A ⊂ R is integral.

Example 2.1.14. Let k be a field and A a nonzero k-algebra. Then we claim that
the associated morphism ϕ : k → A (mapping λ ∈ k to λ · 1 ∈ A) is injective. Indeed its
kernel is an ideal of k, and there are only two such ideals in the field k, namely 0 and k.
As 1 belongs to the image of ϕ, and 1 6= 0 as A is nonzero, the kernel of ϕ can only be
zero. This proves the claim.

If in addition, the k-vector space A has finite dimension, then A is integral over k,
by the second criterion of Proposition 2.1.6.

Proposition 2.1.15. Let A ⊂ B ⊂ C be ring inclusions. If B is integral over A and
C is integral over B, then C is integral over A.

Proof. Let x ∈ C. As C is integral over B, we can find elements b0, . . . , bn−1 ∈ B
such that n ≥ 1 and

(2.1.c) 0 = xn + bn−1x
n−1 + · · ·+ b0.

Let A′ = A[b0, . . . , bn−1] ⊂ B. As B is integral over A, the elements b0, . . . , bn−1 are
integral over A. Therefore by Corollary 2.1.7, the A-module A′ is finitely generated.
On the other hand, the relation (2.1.c) shows that x is integral over A′, so that by
the implication (i) ⇒ (ii) in Proposition 2.1.6 the A′-module A′[x] is finitely generated.
We conclude using Lemma 2.1.4 that the A-module A′[x] is finitely generated. Since
A[x] ⊂ A′[x] it follows from the implication (iii) ⇒ (i) in Proposition 2.1.6 that x is
integral over A. �

Remark 2.1.16. Let A ⊂ R be a ring extension. It follows from Proposition 2.1.15
that the integral closure of A in R is integrally closed in R.

Lemma 2.1.17. Let A ⊂ R be a ring extension, and σ : R → S a ring morphism.
Consider the subring B = σ(A) ⊂ S. If x ∈ R is integral over A, then σ(x) ∈ S is
integral over B.

Proof. If P ∈ A[X] is a monic polynomial such that P (x) = 0, then its image
Q = σ(P ) ∈ B[X] is a monic polynomial such that Q(σ(x)) = 0. �

Lemma 2.1.18. Let A ⊂ R be an integral ring extension. Then for any ideal J of R,
the ring extension A/(J ∩A) ⊂ R/J is integral.

Proof. Consider the quotient morphism σ : R → R/J . Then any element y ∈ R/J
is the image of some element x ∈ R under σ. The element x is integral over A by
assumption, hence it follows from Lemma 2.1.17 that σ(x) = y is integral over σ(A) =
A/(J ∩A) ⊂ R/J . �

Lemma 2.1.19. Let A ⊂ R be an integral ring extension. Assume that the ring R is
a domain. Then for any nonzero ideal J of R, the ideal J ∩A of A is nonzero.
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Proof. Let x ∈ J be a nonzero element. Since x is integral over A, we have

xn + an−1x
n−1 + · · ·+ a0 = 0, for some n ∈ Nr {0} and a0, . . . , an−1 ∈ A.

We may arrange that the integer n ∈ Nr{0} is minimal among those appearing in such an
equation (i.e. the integer n is the minimal degree of a monic polynomial with coefficients
in A admitting x as a zero). If a0 = 0, as R is a domain and x 6= 0, we obtain an equation

xn−1 + an−1x
n−2 + · · ·+ a1 = 0,

which implies that n ≥ 2 (as R is nonzero, being a domain), and contradicts the mini-
mality of the integer n. We thus have a0 6= 0. Then

a0 = x(−xn−1 − an−2xn−2 − · · · − a1) ∈ xR ⊂ J
is a nonzero element of J ∩A. �

Proposition 2.1.20. Let A ⊂ R be an integral ring extension. Assume that R is a
domain. Then R is a field if and only if A is a field.

Proof. Assume that R is a field. Let x ∈ Ar{0}. Then by assumption the element
x−1 ∈ R is integral over A, hence satisfies an equation of the form

x−n + an−1x
1−n + · · ·+ a0 = 0,

with a0, . . . , an−1 ∈ A. Multiplying with x1−n, we obtain

x−1 = −an−1 − · · · − a0xn−1 ∈ R,
which visibly belongs to A. We have proved that A is a field.

Recall that a domain D is a field if and only if its only ideals are 0, D. Assume that
A is a field, and let J be a nonzero ideal of R. Then the ideal I = J ∩R of A is nonzero
by Lemma 2.1.19. As A is a field, we must have I = A. Then 1 ∈ J ∩ A ⊂ J , hence
J = R. We have proved that R is a field. �

Corollary 2.1.21. Let k be a field, and A a finite-dimensional k-algebra. Then
every prime ideal of A is maximal.

Proof. Let p be a prime ideal of A. Then the ring A/p is nonzero by definition of a
prime ideal, so that the ring morphism k → A/p is injective, and makes the ring A/p inte-
gral over k (see Example 2.1.14). Therefore the ring A/p is a field by Proposition 2.1.20,
which means that the ideal p is maximal. �

2. Integers in quadratic fields

When α ∈ C and K ⊂ C is a subfield, we denote by K(α) the subset of C consisting
of the elements P (α)/Q(α), with P,Q ∈ K[X], and Q(α) 6= 0. Then K(α) is the smallest
subfield of C containing α andK. When α is algebraic overK, then we haveK(α) = K[α].

Definition 2.2.1. A quadratic field is a field extension of degree 2 of the field of
rational numbers Q. A quadratic field is called real if it admits an embedding into R as
a subfield, and imaginary otherwise.

Examples of quadratic fields include the fields Q(
√
d), where d ∈ Z is not a square.1

This quadratic field is real if d > 0 and imaginary if d < 0.

1By
√
d we denote one of the two elements of C whose square is d; this choice does not affect the

field Q(
√
d) = Q(−

√
d).
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We will say that an integer d ∈ Z is square-free when 1 is the only square dividing
d. An equivalent condition is that either d or −d can be written as a product of pairwise
distinct primes.

Proposition 2.2.2. Every quadratic field is isomorphic to Q(
√
d) for some d ∈

Z r {1}, where d is square-free.

Proof. Let K be a quadratic field. Pick an element x ∈ K rQ. Then x generates
K as a Q-algebra. Its minimal polynomial has degree 2 (its degree is at most 2 because
dimQK = 2, and is not equal to 1 because x 6∈ K), hence we have an equation of the
form

(2.2.a) x2 + bx+ c = 0 ∈ Q[X], with b, c ∈ Q.

Let e = b2 − 4c ∈ Q. Then (2.2.a) implies that

(2x+ b)2 = e.

In particular
√
e ∈ K, and moreover

x ∈
{−b+

√
e

2
,
−b−

√
e

2

}
⊂ Q(

√
e).

We deduce that K = Q(
√
e). Writing e = u/v with u, v ∈ Z, the element f = v2e belongs

to Z. Then f may be written as f = dg2, where g ∈ Z and d is square-free. Then
d = (v/g)2e, so that Q(

√
e) = Q(

√
d). Note that the case d = 1 is excluded, as then

Q(
√
d) = Q is not a quadratic field. �

Theorem 2.2.3. Let K be a quadratic field, and write K = Q(
√
d) where d ∈ Zr{1}

is square-free (see Proposition 2.2.2), and in particular d 6= 0 mod 4. Then a Z-basis of
the ring of integers OK (see Definition 2.1.10) is given by(1,

√
d) if d is congruent to 2 or 3 modulo 4,(

1,
1 +
√
d

2

)
if d is congruent to 1 modulo 4.

Proof. The Q-algebra K is isomorphic to Q[X]/(X2 − d). In particular, every

element of K is of the form a + b
√
d, for unique elements a, b ∈ Q. Moreover, the

morphism of Q-algebras Q[X]/(X2 − d) → Q[X]/(X2 − d) given by X 7→ −X yields a
morphism of Q-algebras

σ : K → K, a+ b
√
d 7→ a− b

√
d (where a, b ∈ Q).

It follows that Q ⊂ K is the subset of elements fixed by the endomorphism σ : K → K. In
particular for any x ∈ K, the elements x+ σ(x) and xσ(x) belong to Q. If x ∈ OK , then
σ(x) ∈ OK by Lemma 2.1.17, and therefore (by Proposition 2.1.8) the elements x+ σ(x)
and xσ(x) are integral over Z. Since Z is integrally closed (in Q) by Remark 2.1.12, we
deduce that x + σ(x) ∈ Z and xσ(x) ∈ Z. In other words, if a, b ∈ Q are the elements

such that x = a+ b
√
d, we have

(2.2.b) 2a ∈ Z and a2 − db2 ∈ Z.
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Conversely, assume that a, b ∈ Q satisfy the conditions given in (2.2.b). Then the

element a+ b
√
d ∈ K is a root of the monic polynomial

X2 − 2aX + (a2 − db2) ∈ Z[X],

hence belongs to OK . We have proved that, for any a, b ∈ Q

a+ b
√
d ∈ OK ⇐⇒ (2.2.b).

Now the condition (2.2.b) implies that 4db2 ∈ Z. Writing 2b = f/g with f, g ∈ Z
relatively prime, we have df2 ∈ g2Z, and so d ∈ g2Z (as f2 is prime to g2). As d is
square-free, we must have g2 = 1, which implies that 2b ∈ Z. Therefore we may write
a = u/2 and b = v/2 with u, v ∈ Z, and The condition (2.2.b) becomes

(2.2.c) u2 − dv2 ∈ 4Z.
If u is even, the condition (2.2.c) implies that v is also even (recall that d is not divisible
by 4, being square-free); then we have a, b ∈ Z. If u is odd, then u2 = 1 mod 4 and thus
(2.2.c) implies that

(2.2.d) dv2 = 1 mod 4.

Thus the integer v2 is not divisible by 4, and as observed in (0.a) this implies that v2 = 1
mod 4. In particular v is odd, and moreover the relation (2.2.d) implies that d = 1
mod 4.

Conversely, assume that d = 1 mod 4. If u, v ∈ Z have the same parity, then
u2− dv2 = u2− v2 is divisible by 4 (see (0.a)), and so (2.2.c) holds. We have proved that

OK =

{a+ b
√
d, where a, b ∈ Z} if d = 2, 3 mod 4,{u+ v
√
d

2
, where u, v ∈ Z and u = v mod 2

}
if d = 1 mod 4.

The system (1,
√
d), resp. (1, (1+

√
d)/2), is Z-linearly independent in K (being Q-linearly

independent), and is contained in OK when d is congruent to 2 or 3 modulo 4, resp. 1
modulo 4. If u, v ∈ Z have the same parity, then

u+ v
√
d

2
=
u− v

2
+ v

1 +
√
d

2

is a Z-linear combination of 1 and (1 +
√
d)/2. This concludes the proof of the statement.

�
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CHAPTER 3

Trace, norm and discriminant

1. The characteristic polynomial

In this section, we consider a ring B and a subring A ⊂ B. We assume that the
A-module B is free of rank n ∈ N, in other words that there exists an isomorphism of
A-modules B ' A⊕n.

Definition 3.1.1. Let b ∈ B. Consider the morphism of A-modules

lb : B → B, x 7→ bx.

The characteristic polynomial of b is the polynomial1

χB/A(b) = det(X idB −lb) ∈ A[X].

Observe that χB/A(b) is a monic polynomial of degree n with coefficients in A.

Lemma 3.1.2. If α : B
∼−→ B′ is an isomorphism of A-algebras, then for any b ∈ B

we have
χB/A(b) = χB′/A(α(b)).

Proof. Indeed we have lα(b) = α ◦ lb ◦ α−1, and the lemma follows from a standard
property of the determinant. �

We recall that a element x of a ring R is called nilpotent if there exists an integer
n ∈ N such that xn = 0.

Proposition 3.1.3. Assume that the ring A is a domain. If b ∈ B is a nilpotent
element, then χB/A(b) = Xn.

Proof. Assume that bk+1 = 0. Let ϕ = lb, so that ϕk+1 = 0. We have

(X idB −ϕ)(Xk idB +ϕxk−1 + · · ·+ ϕk) = Xk+1 idB .

Taking the determinants, we deduce that χB/A(b) = det(X idB −ϕ) divides det(Xk+1 idB) =

Xn(k+1). We conclude the proof using Lemma 3.1.4 below. �

Lemma 3.1.4. Let A be a domain, and q ∈ N. Then the only monic polynomials
dividing Xn in A[X] are the polynomials Xk for k ≤ q.

Proof. Assume that Xq = PQ with P,Q ∈ A[X]. Then we may write

P = Xm(prX
r + · · ·+ p0) and P = Xm′(qsX

s + · · ·+ q0),

where p0, . . . , pr, q0, . . . , qs ∈ A, and moreover p0 6= 0 and q0 6= 0. Then the (Xm+m′)-
coefficient of PQ is p0q0. If either P or Q is not a power of X (i.e. if r+ s > 0), we must

1We commit a slight abuse of notation, and use the same notation of endomorphisms of the A-module

B and the induced endomorphisms of the A[X]-module B[X].
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have p0q0 = 0 (because PQ = Xq = Xm+m′+r+s). Since the ring A is a domain, this
implies that p0 = 0 or q0 = 0, a contradiction. �

Lemma 3.1.5. Let B1, B2 be rings such that A ⊂ B1 and A ⊂ B2. Assume that
B1, B2 are free of respective ranks n1, n2 ∈ N as A-modules. Then the A-algebra B1×B2

is free of rank n1 + n2 as an A-module, and for any b1 ∈ B2 and b2 ∈ B2, we have

χ(B1×B2)/A((b1, b2)) = χB1/A(b1) · χB2/A(b2).

Proof. If (e1, . . . , en1
) is an A-basis of B1 and (f1, . . . , fn2

) an A-basis of B2, then

(3.1.a) ((e1, 0), . . . , (en1
, 0), (0, f1), . . . , (0, fn2

))

is an A-basis of B1 × B2. Let M1 ∈ Mn1(A),M2 ∈ Mn2(A) be the matrices of lb1 , lb2 in
the above basis of B1, B2. Then the matrix of l(b1,b2) in the basis (3.1.a) of B1 × B2 is
the block matrix

M =

(
M1 0
0 M2

)
∈Mn1+n2

(A)

and the properties of determinant of block matrices show that, denoting by Ik ∈ Mk(A)
the identity matrix,

det(XIn1+n2 −M) = det(XIn1 −M1) · det(XIn2 −M2),

which gives the required formula. �

Proposition 3.1.6 (Cayley–Hamilton Theorem). For any b ∈ B we have(
χB/A(b)

)
(b) = 0.

Proof. Let (e1, . . . , en) be an A-basis of B. Let us write for i = 1, . . . , n

(3.1.b) bei =

n∑
j=1

bijej , with bij ∈ A.

Then (bij) ∈Mn(A) is the matrix of the endomorphism lb in the above A-basis of B. Let
us consider the matrix (using the notation of (1.3.b))

N = (δijb− bij) ∈Mn(B).

The equation (3.1.b) asserts that the column vector (e1, . . . , en) ∈ Bn belongs to the kernel
of N . Since (e1, . . . , en) is an A-basis of B, the element 1 is an A-linear combination of
the elements e1, . . . , en, and in particular a B-linear combination of those. It thus follows
from Lemma 2.1.5 that detN = 0 ∈ B. On the other hand, we have

χB/A(b) = det(δijX − bij) ∈ A[X].

This formula also holds in B[X] (here we use that the following fact: if M ∈Mn(A[X]) has
image M ′ ∈ Mn(B[X]), then detM ′ ∈ B[X] is the image of detM ∈ A[X]). Evaluating
at b ∈ B shows that χB/A(b)(b) = detN ∈ B, and we have seen above that this element
vanishes. �

Two particular coefficients of the characteristic polynomial will be especially signifi-
cant:
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Definition 3.1.7. We define the norm and trace of an element b ∈ B as the de-
terminant and trace of the endomorphism lb of the free A-module B of rank n (see
Definition 3.1.1):

NB/A(b) = det(lb) ∈ A and TrB/A(b) = Tr(lb) ∈ A.

Lemma 3.1.8. For b ∈ B, let us write

χB/A(b) = Xn + an−1X
n−1 + · · ·+ a0 ∈ A[X],

where a0, . . . , an−1 ∈ A. Then

NB/A(b) = (−1)na0 and TrB/A(b) = −an−1.

Proof. Let us choose a basis of the A-module B consisting of n elements of B, and
denote by bij ∈ A the coefficients of the matrix of the endomorphism lb in that basis.
Then (using the notation of (1.3.b))

χB/A(b) = det(δijX − bij) ∈ A[X].

Then we set mij = δijX − bij ∈ A[X], and consider the formula (where Sn denotes the
symmetric group on n elements, and sgn: Sn → {1,−1} is the signature morphism)

(3.1.c) det(mij) =
∑
σ∈Sn

sgn(σ)m1σ(1) · · ·mnσ(n) ∈ A[X].

This polynomial has constant coefficient∑
σ∈Sn

sgn(σ)(−b1σ(1)) · · · (−bnσ(n)) = (−1n) det(bij) ∈ A.

In the formula (3.1.c), the term sgn(σ)m1σ(1) · · ·mnσ(n) can contribute to the Xn−1-
coefficient only when σ(i) = i for at least n− 1 values of i ∈ {1, . . . , n}, in which case we
must also have σ(i) = i for the single remaining value of i, and so σ = id. Therefore the
Xn−1-coefficient of (3.1.c) coincides with the Xn−1-coefficient of the polynomial

n∏
i=1

mii =

n∏
i=1

(X − bii) ∈ A[X],

and is thus equal to
n∑
i=1

(−bii) = −Tr(lb) ∈ A. �

Proposition 3.1.9. The following hold:

(i) We have

TrB/A(0) = 0 and NB/A(1) = 1.

(ii) For any x, y ∈ B, we have

TrB/A(x+ y) = TrB/A(x) + TrB/A(y) and NB/A(xy) = NB/A(x) NB/A(y).

(iii) For any a ∈ A, we have χB/A(a) = (X − a)n. In particular

TrB/A(a) = na and NB/A(a) = an.

Proof. (i) and (ii) are clear from the definitions.
(iii) : This follows from the fact that, in any A-basis of B, the matrix of la : B → B

is diagonal with coefficients (a, . . . , a). �
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Lemma 3.1.10. For any b ∈ B, we have

b ∈ B× ⇐⇒ NB/A(b) ∈ A×.

Proof. It follows from Proposition 3.1.9 (i) and (ii) that NB/A(b) ∈ A× when b ∈
B×. Conversely if NB/A(b) ∈ A×, the morphism of A-modules lb : B → B has invertible
determinant, hence is bijective. Its surjectivity yields an element c ∈ B such that bc = 1,
which shows that b ∈ B×. �

Remark 3.1.11. It follows from Proposition 3.1.9 and Lemma 3.1.10 that the norm
map induces a group morphism

NB/A : B× → A×.

2. The discriminant

In this section B will be a ring and A ⊂ B a subring such that the A-module B is
free of rank n ∈ N.

Definition 3.2.1. The discriminant of a system (x1, . . . , xn) ∈ Bn is defined as the
element

DB/A(x1, . . . , xn) = det(TrB/A(xixj)) ∈ A,
where (i, j) runs over {1, . . . , n}2.

Lemma 3.2.2. Assume that (e1, . . . , en) is an A-basis of B. Let ϕ : B → B be a
morphism of A-modules. Then

DB/A(ϕ(e1), . . . , ϕ(en)) = (detϕ)2 ·DB/A(e1, . . . , en).

Proof. Let us denote by aij ∈ A for 1 ≤ i, j ≤ n the coefficients of the matrix of ϕ
in the basis (e1, . . . , en). Then

Tr(ϕ(ei)ϕ(ej)) = Tr
(( n∑

p=1

apiep

)( n∑
q=1

aqjeq

))
=

n∑
p,q=1

apiaqj Tr(epeq).

We thus have equalities between matrices in Mn(A)

(Tr(ϕ(ei)ϕ(ej))) = (api) · (Tr(epeq)) · t(aqj),
where tM denotes the transpose of the matrix M . Taking determinants yields the state-
ment (as transposing a matrix does not change its determinant). �

Definition 3.2.3. The discriminant ideal DB/A is defined as the ideal of A generated
by the elements DB/A(x1, . . . , xn), where (x1, . . . , xn) runs over Bn.

Lemma 3.2.4. If α : B
∼−→ B′ is an isomorphism of A-algebras, then DB′/A = DB/A.

Proof. Consider a system (x1, . . . , xn) ∈ Bn. It follows from Lemma 3.1.2 that, for
any i, j ∈ {1, . . . , n}

TrB/A(xixj) = TrB′/A(α(xixj)) = TrB′/A(α(xi)α(xj)).

Taking the determinants of the matrices whose coefficients are displayed in the above
equation shows that

DB/A(x1, . . . , xn) = DB′/A(α(x1), . . . , α(xn)).

This implies that DB/A ⊂ DB′/A. Applying this reasoning to the inverse morphism

α−1 : B′ → B shows that DB/A ⊂ DB′/A. �
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Proposition 3.2.5. Assume that DB/A 6= 0 and that the ring A is a domain. Then a
system (x1, . . . , xn) ∈ Bn is an A-basis of B if and only if the element DB/A(x1, . . . , xn)
generates the ideal DB/A in A.

Proof. Let (e1, . . . , en) be an A-basis of B. Then there exists an A-linear map
ϕ : B → B such that ϕ(ei) = xi for all i ∈ {1, . . . , n}, and by Lemma 3.2.2 we have

(3.2.a) DB/A(x1, . . . , xn) = (detϕ)2 ·DB/A(e1, . . . , en).

As (detϕ)2 ∈ A, this implies that the element DB/A(e1, . . . , en) generates the ideal DB/A

in A, proving one implication.
Now let d = DB/A(x1, . . . , xn), and assume that d generates the ideal DB/A in A.

Then DB/A(e1, . . . , en) = ad for some a ∈ A, hence (3.2.a) yields d = (detϕ)2ad. Now
d 6= 0 (because by the ideal DB/A is nonzero by assumption), and as A is assumed to be

a domain, we deduce that 1 = (detϕ)2a. Therefore the element detϕ is invertible in A.
Thus ϕ is an isomorphism of A-modules, and so (x1, . . . , xn) is an A-basis of B, being
the image under ϕ of an A-basis of B. �

The following complement is sometimes useful to study integers in number fields:

Lemma 3.2.6. Assume that A = Z, and let (x1, . . . , xn) ∈ Bn be a system such that
the integer DB/Z(x1, . . . , xn) ∈ Z is square-free. Then (x1, . . . , xn) is a Z-basis of B.

Proof. Indeed, let (e1, . . . , en) be a Z-basis of B. Then there exists a morphism of
Z-modules ϕ : B → B such that ϕ(ei) = xi for each i ∈ {1, . . . , n}. By Lemma 3.2.2 we
have

DB/Z(x1, . . . , xn) = det(ϕ)2 ·DB/Z(e1, . . . , en).

As this integer is assumed to be square-free, we must have det(ϕ) ∈ {1,−1} = Z×, and
thus ϕ is an isomorphism. This implies that (x1, . . . , xn) is a Z-basis of B. �

Remark 3.2.7. Lemma 3.2.6 merely provides a sufficient condition for a given system
to be a Z-basis, which is not always necessary, as shown by Example 3.2.8 below.

Example 3.2.8. Let K = Q(
√
d), with d ∈ Z r {1} square-free. We set A = Z

and B = OK . Let us compute the discriminant dK of the Z-basis of OK given by
Theorem 2.2.3.

Assume that d is congruent to 2 or 3 modulo 4. Then a Z-basis of OK is given by
(x1, x2) = (1,

√
d). We have

Tr(l1) = Tr

(
1 0
0 1

)
= 2, Tr(l√d) = Tr

(
0 d
1 0

)
= 0, Tr(ld) = Tr

(
d 0
0 d

)
= 2d,

so that

TrOK/Z(xixj) =

(
Tr(l1) Tr(l√d)

Tr(l√d) Tr(ld)

)
=

(
2 0
0 2d

)
.

Taking determinants we obtain dK = 4d.
Assume now that d = 1 mod 4, and let e ∈ Z be the integer such that d − 1 = 4e.

Then a Z-basis of OK is given by (x1, x2) = (1, α), where α = (1 +
√
d)/2. We have

α2 =
(1 +

√
d)2

4
=
d− 1

4
+

1 +
√
d

2
= e+ α

and thus
α3 = eα+ α2 = e+ (e+ 1)α.
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We have

Tr(l1) = Tr

(
1 0
0 1

)
= 2, Tr(lα) = Tr

(
0 e
1 1

)
= 1, Tr(lα2) = Tr

(
e e
1 e+ 1

)
= 2e+1,

hence

TrOK/Z(xixj) =

(
Tr(l1) Tr(lα)
Tr(lα) Tr(lα2)

)
=

(
2 1
1 2e+ 1

)
.

Taking determinants yields dK = 4e+ 1 = d.
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CHAPTER 4

Étale algebras

1. Separable field extensions

When k is a field, recall that a k-algebra is a ring A together with a ring morphism
ιA : k → A. A morphism of k-algebras ϕ : A→ B is a ring morphism such that ϕ◦ιA = ιB .

When a k-algebra F is a field, we say that F/k is a field extension. Note that in
this case the ring morphism k → F is automatically injective, and so we will view k as a
subfield of F .

Definition 4.1.1. A field extension F/k is called finite, or of finite degree, if the
inclusion k ⊂ F makes F a finite-dimensional k-vector space. The degree of the extension
is dimk L, denoted [L : k].

Remark 4.1.2. If the field extensions F/k and L/F are both finite, then so is L/k,
and

[L : k] = [L : F ][F : k].

Definition 4.1.3. Let F/k be a field extension. An element x ∈ F is called algebraic
over k if it is the root of a nonzero polynomial with coefficients in k. The extension F/k
is called algebraic when all elements of F are algebraic over k.

Note that a field extension F/k is algebraic if and only if the ring F is integral over
its subring k.

Remark 4.1.4. A finite field extension F/k is always algebraic. Indeed, if x ∈ F ,
then the family xi, i ∈ N is linearly dependent over k (as dimk F < ∞), which pro-
vides a nonzero polynomial in k[X] having x as a root. (Alternatively this follows from
Example 2.1.14.) There exist algebraic extensions which are not finite.

Lemma 4.1.5. Let P ∈ k[X] be an irreducible polynomial, and set F = k[X]/P . Then
F is a field and [F : k] = degP .

Proof. Let d = degP , and x ∈ F the class of X. A k-basis of F is given by
1, x, . . . , xd−1, and so dimk F = d. As P is irreducible, it follows that the ring F is a
domain. The ring extension k ⊂ F is integral by Example 2.1.14, hence F is a field by
Proposition 2.1.20. �

Definition 4.1.6. When F/k is a field extension and x ∈ F is algebraic over k, the
minimal polynomial of x over k is the unique monic generator of the ideal of polynomial
P in k[X] such that P (x) = 0 ∈ F .

Remark 4.1.7. Let F/k be a field extension, and x ∈ F an algebraic element. Let
P ∈ k[X] be the minimal polynomial of x over k. Then X 7→ x induces an isomorphism
of k-algebras k[X]/P ' k[x]. Since the ring k[x] is a domain (being contained in the field
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F ), so is the ring k[X]/P , which implies that the polynomial P is irreducible. Thus by
Lemma 4.1.5 the subalgebra k[x] ⊂ F is a field. We will call the field extension k[x]/k
the subextension of F/k generated by x.

Proposition 4.1.8. Let k be a field and P1, . . . , Pn ∈ k[X] be monic polynomi-
als. Then there exists a field extension L/k of finite degree such that each polynomial
P1, . . . , Pn splits into a product of linear factors in L[X].

Proof. We proceed by induction on d = (degP1) + · · · + (degPn) (allowing k to
vary). The proposition is clear if d = 0, so we assume that d ≥ 1. Then degPj > 0
for some j ∈ {1, . . . , n}, and we let Q be an irreducible factor of Pj . Consider k-algebra
E = k[Y ]/Q(Y ). Then E/k is a field extension of finite degree by Lemma 4.1.5. The
polynomial Pj has a root in E, namely the class y of Y . Thus Pj = (X − y)Rj in E[X]
for some polynomial Rj ∈ E[X]. Setting Ri = Pi ∈ E[X] for every i ∈ {1, . . . , n}r {j},
we have

(degR1) + · · ·+ (degRn) = d− 1,

and so by induction we may find a field extension L/E of finite degree where each Ri
splits into a product of linear factors. Then each Pi splits into a product of linear factors
in L[X], completing the proof. �

Proposition 4.1.9. Let E/k be a field extension, and L/k a field extension of finite
degree. Then there exist a field extension F/E of finite degree, and a morphism of k-
algebras L→ F .

Proof. We proceed by induction on the degree [L : k], the case [L : k] being clear.
Assume that L 6= k, and pick x ∈ Lr k. Let K/k be the subextension of L/k generated
by x. Then x is the root of an irreducible polynomial P ∈ k[X] (its minimal polynomial
over k, recall that the field extension L/k is assumed to be of finite degree), and the
k-algebra K isomorphic to k[X]/P . If Q is any irreducible divisor of P in E[X], then
E′ = E[Y ]/Q(Y ) is a field extension of E having finite degree (Lemma 4.1.5), which
admits a morphism of k-algebras K → E′ (corresponding to X 7→ Y ). By induction,
we find a field extension F/E′ of finite degree and a morphism of K-algebras L → F ,
concluding the proof. �

It is sometimes convenient to adopt a slightly different point of view:

Corollary 4.1.10. Let L1/k, . . . , Ln/k be field extensions of finite degrees. Let E/k
be a field extension. Then there exists a field extension F/E such that F/k contains
L1/k, . . . , Ln/k as subextensions.

Proof. We proceed by induction on n, the case n = 0 being clear. If n > 0, we
find by induction a field extension F ′/E such that F ′/k contains L1/k, . . . , Ln−1/k as
subextensions. Since the extension Ln/k is of finite degree, Proposition 4.1.9 yields a field
extension F/F ′ together with a morphism of k-algebras Ln → F , or equivalently a field
extension F/k containing F ′/k and Ln/k. This proves the corollary. �

Definition 4.1.11. Let k be a field. A polynomial P ∈ k[X] is called separable if,
for every field extension L/k, the polynomial P ∈ L[X] has no multiple root in L.
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A field extension F/k is called separable if every element of F is the root of an
irreducible separable polynomial with coefficients in k. In particular, a separable extension
is algebraic by definition.1

Note that an algebraic extension is separable if and only if the minimal polynomial
of every element is separable.

Remark 4.1.12. If F/k is a field extension of finite degree, and P ∈ k[X] is a
polynomial whose image in F [X] splits into a product of pairwise distinct linear factors,
then P is separable. Indeed, if L/k is a field extension, we find by Corollary 4.1.10 a field
extension E containing F and L. Then P splits into a product of pairwise distinct linear
factors in E[X], hence has no multiple roots in E. Since L ⊂ E, we conclude that P has
no multiple roots in L as well.

Remark 4.1.13. It follows from the definition that any subextension of a separable
extension is separable. In addition, if F/k is separable field extension and E/k a subex-
tension of F/k, then the extension F/E is separable: indeed the minimal polynomial over
E of an element of F divides its minimal polynomial over k, and so must be separable.

Lemma 4.1.14. An irreducible polynomial P ∈ k[X] is separable if and only if its
derivative P ′ ∈ k[X] is nonzero.

Proof. First, let F/k be a field extension, and a ∈ F be such that P (a) = 0. Write
P = (X−a)R, with R ∈ F [X]. Then P ′ = R+(X−a)R′, and so P ′(a) = R(a). Therefore

(4.1.a) a is a multiple root of P ⇐⇒ (P (a) = 0 and P ′(a) = 0).

Assume now that P ′ 6= 0. Let Q ∈ k[X] be the greatest common divisor of P and P ′

in k[X], that is the monic generator of the ideal generated by P and P ′ in k[X]. As P ′

is nonzero and Q | P ′, we have degQ ≤ degP ′ < degP . As P is irreducible and divisible
by Q, we must have Q = 1. Therefore there exist U, V ∈ k[X] such that 1 = UP + V P ′.
If F/k is a field extension, and a ∈ F a multiple root of P , then a is root of P ′ by (4.1.a),
so that

1 = (UP + V P ′)(a) = U(a)P (a) + V (a)P ′(a) = 0,

a contradiction which proves that P is separable.
Conversely assume that P is separable. As P is nonconstant (being irreducible), by

Proposition 4.1.8 we may find a field extension F/k, and an element a ∈ F such that
P (a) = 0. Then P ′(a) 6= 0 by (4.1.a), and in particular the polynomial P ′ ∈ k[X] is
nonzero. �

Definition 4.1.15. A field k is called perfect if every finite field extension of k
is separable. An equivalent condition is that every irreducible polynomial in k[X] is
separable.

Proposition 4.1.16. Every field of characteristic zero is perfect.

Proof. Let k be a field of characteristic zero, and let P ∈ k[X] be an irreducible
polynomial, of degree n > 1. Then we write

P = anX
n + · · ·+ a0, with a0, . . . , an ∈ k,

1There exist more sophisticated definitions of separability, which apply to non-algebraic extensions.
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and an 6= 0. Then
P ′ = nanX

n−1 + · · ·+ a1.

As n 6= 0 in k (because k has characteristic zero), we deduce that P ′ 6= 0. The proposition
thus follows from Lemma 4.1.14. �

Proposition 4.1.17. Every finite field is perfect.

Proof. Let k be a finite field. Then k has characteristic p, when p > 0 is a prime
number. Let us first recall that if A is any ring where p = 0, we have

(4.1.b) (a+ b)p = ap + bp for any a, b ∈ A.
(Observe that the binomial coefficients

(
p
i

)
are all divisible by p when 1 < i < p.)

Let P ∈ k[X] be an irreducible polynomial such that P ′ = 0. If am ∈ k is the Xm-th
coefficient of P , then mam is the Xm−1-th coefficient of P ′. When m is not divisible by p,
we have m 6= 0 in k and thus am = 0. Therefore we may P = B(Xp), for some B ∈ k[Y ].
Let us write

B = brY
r + · · ·+ b0, with b0, . . . , br ∈ k.

In view of (4.1.b) (applied to A = k), the Frobenius map φ : k → k given by x 7→ xp is a
group morphism. As xp = 0 implies x = 0 in the field k, the morphism φ is injective. But
the set k is finite, hence the map φ must also be surjective. Thus we can find elements
c0, . . . , cr ∈ k such that cpi = bi for all i = 0, . . . , r. Consider the polynomial

C = crX
r + · · ·+ c0 ∈ k[X].

Then C(X)p = B(Xp) = P by (4.1.b) (applied in the ring A = k[X]), which contradicts
the fact the P is irreducible.

We have proved that every irreducible polynomial in k[X] has a nonzero derivative,
and we deduce the proposition from Lemma 4.1.14. �

We now come to a crucial property of separable extensions:

Proposition 4.1.18. Let F/k be a finite separable field extension, and set n = [F : k].
Then there exists a finite field extension `/k and n pairwise distinct morphisms of k-
algebras σ1, . . . , σn : F → `.

Proof. We proceed by induction on the integer n. The case n = 1 is clear, so we
assume that n > 1, or equivalently F 6= k. Since F/k contains no infinite increasing
chain of subextensions (such chains are in particular chains of k-subspaces, and F is
finite-dimensional over k), we may find a subextension E ⊂ F and an element x ∈ F rE
such that F = E[x] (recall from Remark 4.1.7 that E[x] is a field). Let P ∈ E[X]
be the minimal polynomial of x over E. Since the field extension F/E is separable by
Remark 4.1.13, the polynomial P is separable. Mapping X to x induces an isomorphism
of E-algebras E[X]/P ' F . Recall that the extension E/k is separable (Remark 4.1.13),
and its degree m = [E : k] satisfies m < [F : k] because E 6= F . Therefore by induction
we may find a field extension `′/k of finite degree, and m distinct morphisms of k-algebras
σ′1, . . . , σ

′
m : E → `′.

For each i ∈ {1, . . . , n} the polynomial σ′i(P ) ∈ `′[X] is separable, being the image
of the separable polynomial P under the field extension `′/k given by σ′i. By Proposi-
tion 4.1.8, we may find a field extension `/`′ of finite degree such that each polynomial
σ′i(P ) ∈ `′[X] splits into monic linear factors in `[X], which are pairwise distinct since
σ′i(P ) is separable.
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For each i ∈ {1, . . . ,m}, the extensions of the composite E
σ′i−→ `′ ⊂ ` to a morphism

of k-algebras F → ` are in bijection with the roots of σ′i(P ) in ` (because F ' E[X]/P ),
of which there are exactly degP = [F : k], because the polynomial σ′i(P ) is separable
over . We have thus found m[F : k] = n morphisms of k-algebras F → `, as required. �

We will need the following consequence later:

Corollary 4.1.19 (Primitive Element Theorem). If F/k is a separable field exten-
sion of finite degree, there exists an element x ∈ F such that F = k[x].

Proof. When k is finite, the group k× is cyclic by Proposition 1.3.5, and we may
simply take x a generator of that group.

We now assume that k is infinite. Let n = [F : k]. By Proposition 4.1.18 we find a
field extension `/k of finite degree, and n distinct morphisms σ1, . . . , σn : F → `. For each
pair (i, j) ∈ {1, . . . , n}2, consider the k-subspace Vi,j ⊂ F consisting of those elements
y ∈ F such that σi(y) = σj(y). Since the morphisms σ1, . . . , σn are pairwise distinct,
we have Vi,j 6= F whenever i 6= j. By Lemma 4.1.20 below, we may find an element
x ∈ F which belongs to no Vi,j with i 6= j. The elements σi(x) for i ∈ {1, . . . , n} are then
pairwise distinct. Those are roots (in `) of the minimal polynomial P of x over k. Letting
d = degP , we thus have d ≥ n. The elements 1, x, . . . , xd−1 ∈ F are linearly independent
over k, hence [k[x] : k] ≥ d. But k[x] ⊂ F , hence [k[x] : k] ≤ [F : k] = n. We conclude
that d = n, and [k[x] : k] = [F : k], which implies that k[x] = F . �

Lemma 4.1.20. Let k be an infinite field, and V a k-vector space. If V1, . . . , Vn are
k-subspaces of V such that V = V1 ∪ · · · ∪ Vn, then there exists i ∈ {1, . . . , n} such that
Vi = V .

Proof. We proceed by induction on n, the statement being clear if n = 1. Assume
that n > 1. Assume V1 6= V (otherwise the conclusion of the lemma holds), and pick
y ∈ V r V1. Let x ∈ V1. Then the set

E = {x+ λy|λ ∈ k r {0}}

is in bijection with kr{0} (as y 6= 0), and in particular is infinite. Since y 6∈ V1, it follows
that E ∩ V1 = ∅, and thus E ⊂ V2 ∪ · · · ∪ Vn, or equivalently

E = (E ∩ V2) ∪ · · · ∪ (E ∩ Vn).

As the set E is infinite, we may find an index j ∈ {2, . . . , n} such that the set E ∩ Vj is
infinite, and in particular contains two distinct elements. So there are λ1 6= λ2 ∈ k such
that x+ λ1y ∈ Vj and x+ λ2y ∈ Vj . This implies that

y = (λ1 − λ2)−1((x+ λ1y)− (x+ λ2y))

belongs to Vj , and thus x = (x+λ1y)−λ1y ∈ Vj . We have proved that V1 ⊂ V2∪· · ·∪Vn.
Therefore V = V2∪· · ·∪Vn, and by induction we find i ∈ {2, . . . , n} such that Vi = V . �

2. Étale algebras over a field

In this section k is a field. When X is any set, and F a field, then the set of maps
X → F is naturally F -vector space; namely for any f, g : X → F and λ ∈ F , we define

f + λg : X → F, x 7→ f(x) + λg(x).
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Lemma 4.2.1 (Dedekind). Let A be a k-algebra, and `/k a field extension. Let
σ1, . . . , σn be pairwise distinct morphisms of k-algebras A → `. Then the elements
σ1, . . . , σn are `-linearly independent, in the `-vector space of maps A→ `.

In particular n ≤ dimk A when A is finite-dimensional.

Proof. Assume that

(4.2.a) a1σ1 + · · ·+ amσm = 0.

where a1, . . . , am ∈ ` are not all zero. Pick such a relation, where m ∈ {1, . . . , n} is
minimal. In particular am 6= 0. As σm 6= 0 (because σm(1) = 1 ∈ `, which is nonzero
since ` is a field), there exists j ∈ {1, . . . ,m− 1} such that aj 6= 0 (in particular m > 1).
Since σj 6= σm, we may find z ∈ A such that σj(z) 6= σm(z). Since the morphisms
σ1, . . . , σn are multiplicative, it follows from (4.2.a) (applied to zx for all x ∈ A) that

(4.2.b) a1σ1(z)σ1 + · · ·+ amσm(z)σm = 0.

Subtracting σm(z) times Equation (4.2.a) to (4.2.b) yields

a1(σ1(z)− σm(z))σ1 + · · ·+ am−1(σm−1(z)− σm(z))σm−1 = 0.

Since aj(σj(z)−σm(z)) 6= 0, we have found a contradiction with the minimality of m. �

Definition 4.2.2. A k-algebra A of finite dimension n is called étale if there exist a
field extension `/k and n distinct morphisms of k-algebras σ1, . . . , σn : A→ `.

It is clear from the definition that any k-algebra isomorphic to an étale k-algebra is
itself étale.

Lemma 4.2.3. Let A be an étale k-algebra. Then there exist a field extension `/k of
finite degree, and n distinct morphisms of k-algebras σ1, . . . , σn : A→ `.

Proof. Let σ1, . . . , σn : A → ` be as in Definition 4.2.2, and let e1, . . . , en be a k-
basis of A. Recall that the ring A is integral over k (see Example 2.1.14), hence the
elements σi(ej) ∈ ` are integral over k by Lemma 2.1.17. Therefore, by Corollary 2.1.7,
the k-subalgebra `′ of ` generated by the elements σi(ej) for i, j ∈ {1, . . . , n} is of finite
dimension as a k-vector space. Since the ring `′ is contained in the field `, it is a domain,
and thus `′ is a field by Proposition 2.1.20. Since `′ ⊂ ` contains the image of each
morphism σi for i ∈ {1, . . . , n}, we may thus replace ` with `′. �

Recall that a field F is called algebraically closed if the only algebraic field extension
of F is F itself.

Lemma 4.2.4. Let k/k be a field extension, with k algebraically closed. Then a k-
algebra A of finite dimension n is étale if and only if there are exactly n morphisms of
k-algebras A→ k.

Proof. Assume that A is étale, and pick a finite field extension `/k and morphisms
σ1, . . . , σn : A→ ` (see Lemma 4.2.3). Then it follows from Proposition 4.1.9 that we may

find a morphism of k-algebras `→ k
′
, where k

′
/k is a field extension of finite degree, and

in particular an algebraic field extension. Since the field k is algebraically closed, we must

have k
′

= k. We have thus n distinct morphisms A → k. By Dedekind’s Lemma 4.2.1,
there are no other such morphisms.

The converse follows from Definition 4.2.2, with ` = k. �
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Proposition 4.2.5. A finite separable field extension of k is an étale k-algebra.

Proof. This is Proposition 4.1.18. �

Proposition 4.2.6. Let P ∈ k[X] be a nonzero polynomial, and consider the k-
algebra A = k[X]/P . Then A is étale if and only if P is separable.

Proof. Let n = degP = dimk A, and denote by x ∈ A the class of X.
Assume that P is separable. Then by Proposition 4.1.8 we may find a field extension

`/k such that P splits into linear factors in `[X], and so has n distinct roots α1, . . . , αn ∈ `.
This yields n distinct morphisms of k-algebras, given by x 7→ αi for i = 1, . . . , n. We have
proved that A is étale.

Conversely, assume that A is étale. According to Lemma 4.2.3, we may find a finite
field extension `/k and n distinct morphisms of k-algebras σ1, . . . , σn : A → `. The
elements σ1(x), . . . , σn(x) ∈ ` are then n distinct roots of P . Let us consider now a field
extension F/k. By Corollary 4.1.10 we may find a field extension E/k containing both
F/k and `/k. The polynomial P splits into a product of pairwise distinct monic linear
factors in E[X] (because it does so in `[X]), hence its roots in E are pairwise distinct in
E, and thus so are its roots in F . We have proved that the polynomial P is separable. �

3. Extension of scalars

Let k be a field. When A is a k-algebra and `/k a field extension, we recall that we
may define an `-algebra A⊗k ` (see exercises). Its elements are of the form

m∑
i=1

ai ⊗ λi, where ai ∈ A, λi ∈ `.

The map A→ A⊗k ` given by a 7→ a⊗ 1 is an injective morphism of k-algebra, and we
will thus view A as a k-subalgebra of A⊗k `.

When A is finite-dimensional as a k-vector space, so is the `-vector space A⊗k `, and

(4.3.a) dimk A = dim`(A⊗k `).

This construction satisfies the following universal property: if C is an `-algebra, every
morphism of k-algebras A→ C extends uniquely to a morphism of `-algebras A⊗k `→ C.

If A,B are k-algebras, then we have a canonical isomorphism of `-algebras

(4.3.b) (A×B)⊗k ` ' (A⊗k `)× (B ⊗k `).

Proposition 4.3.1. Let A be an étale k-algebra, and consider the distinct morphisms
of k-algebras σ1, . . . , σn : A → `, where `/k is a field extension and n = dimk A (see
Definition 4.2.2). Then there exists an isomorphism of `-algebras

σ : A⊗k `
∼−→ `n

mapping x⊗ y to (σ1(x)y, . . . , σn(x)y).

Proof. Let us write A′ = A ⊗k `. By the universal property mentioned above,
the n distinct morphisms of k-algebras σ1, . . . , σn : A → ` extend uniquely to n distinct
morphisms of `-algebras σ′1, . . . , σ

′
n : A′ → `, and we set

σ = (σ′1, . . . , σ
′
n) : A′ → `n.
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For i ∈ {1, . . . , n} and x ∈ A, y ∈ `, we have, by `-linearity of σ′i and the fact that σ′i
extends σi,

σ′i(x⊗ y) = σ′i(x)y = σi(x)y.

By Dedekind’s Lemma 4.2.1, the elements σ′1, . . . , σ
′
n are linearly independent in the

`-vector space Hom`(A
′, `) of `-linear forms A′ → `. This vector space has dimension

dim`A
′ = dimk A = n (see (4.3.a)), hence the family σ′1, . . . , σ

′
n generates it.

Let now a ∈ A′ be such that σi(a) = 0 ∈ ` for all i ∈ {1, . . . , n}. If a 6= 0, then we
may find an `-linear form ϕ : A′ → ` such that ϕ(a) 6= 0 (take an `-basis (e1, . . . , en) of
A′, pick i ∈ {1, . . . , n} such that i-th coordinate of a is nonzero in that basis, and take for
ϕ the linear form given by ϕ(ej) = δij). We may then write ϕ as an `-linear combination
of σ′1, . . . , σ

′
n (recall that those generate the `-vector space Hom`(A

′, `)). This implies
that ϕ(a) = 0, a contradiction. We have proved that σ is injective, hence bijective by
dimensional reasons (see (4.3.a)). �

Lemma 4.3.2. Let A be a finite dimensional k-algebra, and `/k a field extension.

(i) For any a ∈ A, the characteristic polynomials (see Definition 3.1.1) satisfy

χA/k(a) = χ(A⊗k`)/`(a⊗ 1) ∈ k ⊂ `.
(ii) If (x1, . . . , xn) ∈ An, the discriminant satisfy

DA/k(x1, . . . , xn) = D(A⊗k`)/`(x1 ⊗ 1, . . . , xn ⊗ 1) ∈ k ⊂ `.
(iii) We have

DA/k = 0 ⇐⇒ D(A⊗k`)/` = 0.

Proof. We let (e1, . . . , en) be a k-basis of A. Then (e1 ⊗ 1, . . . , en ⊗ 1) is an `-basis
of A⊗k ` (exercise).

(i): The coefficients of the matrix of la⊗1 : A⊗k`→ A⊗k` in the basis (e1⊗1, . . . , en⊗
1) are the images of those of the matrix of la : A→ A in the basis (e1, . . . , en) under the
inclusion k ⊂ `. It follows that the characteristic polynomial χ(A⊗k`)/`(a⊗1) is the image
of the characteristic polynomial χA/k(a) under the inclusion k ⊂ `.

(ii): Let us write A′ = A ⊗k ` and x′i = xi ⊗ 1 for i ∈ {1, . . . , n}. From (i), we
deduce that TrA/k(xixj) = TrA′/`(x

′
ix
′
j) for any i, j ∈ {1, . . . , n}. Therefore the matrix

(TrA′/`(x
′
ix
′
j)) ∈ Mn(`) is the image of the matrix (TrA/k(xixj)) ∈ Mn(k) under the in-

clusion k ⊂ `, hence its determinant DA′/`(x
′
1, . . . , x

′
n) ∈ ` is the image of the determinant

DA/k(x1, . . . , xn) ∈ k under the inclusion k ⊂ `.
(iii): It follows from Proposition 3.2.5 that

DA/k(e1, . . . , en) 6= 0 ⇐⇒ DA/k 6= 0,

and that
D(A⊗`)/`(e1 ⊗ 1, . . . , en ⊗ 1) 6= 0 ⇐⇒ D(A⊗`)/` 6= 0.

Therefore (iii) follows from (ii). �

We are now in position to prove certain formulas that will be very useful in order to
perform computations in étale algebras (and in particular in separable field extensions).

Proposition 4.3.3. Let A be an étale k-algebra. In the notation of Definition 4.2.2,
the characteristic polynomial of any a ∈ A satisfies

χA/k(a) =

n∏
i=1

(X − σi(a)) ∈ k[X] ⊂ `[X].
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In particular, in k ⊂ `

TrA/k(a) =

n∑
i=1

σi(a) and NA/k(a) =

n∏
i=1

σi(a).

Proof. Consider the isomorphism of `-algebras σ : A⊗k `
∼−→ `n of Proposition 4.3.1.

We have in k ⊂ `, by Lemma 4.3.2 (i) and Lemma 3.1.2

χA/k(a) = χ(A⊗k`)/`(a⊗ 1) = χ`n/`(σ(a⊗ 1)) = χ`n/`(σ1(a), . . . , σn(a)).

Now in the canonical basis of `n, multiplication by the element (σ1(a), . . . , σn(a)) is
given by the diagonal matrix having coefficients σ1(a), . . . , σn(a), whose characteristic
polynomial is

n∏
i=1

(X − σi(a)) ∈ `[X]. �

Proposition 4.3.4. Let A be an étale k-algebra. In the notation of Definition 4.2.2,
for any system (x1, . . . , xn) ∈ An, we have

DA/k(x1, . . . , xn) = det(σi(xj))
2 ∈ k ⊂ `.

Proof. For any i, j ∈ {1, . . . , n}, we have by Proposition 4.3.3

TrA/k(xixj) =

n∑
p=1

σp(xixj) =

n∑
p=1

σp(xi)σp(xj) ∈ `,

which coincides with the (i, j)-th coefficient of the matrix product M · tM in Mn(`), where
M is the matrix whose (r, s)-th coefficient is σr(xs) ∈ `, and tM its transpose. Thus

DA/k(x1, . . . , xn) = det(TrA/k(xixj))

= det(M · tM)

= (detM) · (det tM)

= (detM)2

= det(σi(xj))
2. �

Proposition 4.3.5. Let A = k[X]/P , where P ∈ k[X] is a monic separable polyno-
mial. Let n be the degree of P , and x ∈ A be the class of X. Then

DA/k(1, x, . . . , xn−1) = (−1)
n(n−1)

2 NA/k(P ′(x)) ∈ k,
where P ′ ∈ k[X] is the derivative of P .

Proof. Recall from Proposition 4.2.6 that the k-algebra A is étale. So we have n
morphisms of k-algebras σ1, . . . , σn : A→ `, where `/k is a field extension. Let αi = σi(x)
for i = 1, . . . , n. Then α1, . . . , αn are n distinct roots of P in `, hence

P =

n∏
i=1

(X − αi) ∈ `[X],

so that

P ′ =

n∑
i=1

∏
j 6=i

(X − αj) ∈ `[X],
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and in particular, for any i ∈ {1, . . . , n}

(4.3.c) P ′(αi) =
∏
j 6=i

(αi − αj) ∈ `[X].

We now compute:

DA/k(1, x, . . . , xn−1) = det((αi)
j−1)2 by Proposition 4.3.4

=
(∏
j<i

(αi − αj)
)2

(Vandermonde determinant)

= (−1)
n(n−1)

2

∏
i 6=j

(αi − αj) as card{(i, j)|1 ≤ i < j ≤ n} =
n(n− 1)

2

= (−1)
n(n−1)

2

n∏
i=1

∏
j 6=i

(αi − αj)

= (−1)
n(n−1)

2

n∏
i=1

P ′(αi) by (4.3.c)

= (−1)
n(n−1)

2

n∏
i=1

σi(P
′(x)) as σi is a morphism of k-algebras

= (−1)
n(n−1)

2 NA/k(P ′(x)) by Proposition 4.3.3. �

4. The trace form

Lemma 4.4.1. Let A,B be k-algebras. Then A and B are étale if and only if A×B
is étale.

Proof. Clearly A and B are finite-dimensional over k if and only if A×B is so. Let
us assume that this is the case, and write n = dimk A,m = dimk B.

Assume that the k-algebras A,B are étale. Then by Lemma 4.2.3 there exist field
extensions `/k and `′/k of finite degrees, as well as n morphisms of k-algebras A → `
and m morphisms of k-algebras B → `′. By Corollary 4.1.10, we may assume that ` = `′

(upon enlarging `). Composing with the projections A × B → A and A × B → B, we
obtain n+m distinct morphisms of k-algebras A×B → `. This proves that the k-algebra
A×B is étale.

Let now `/k be a field extension, and f : A×B → ` a morphism of k-algebras. Then
the image of f is a domain (being contained in the field `). Thus ker f is a prime ideal
of A × B, hence a maximal ideal by Corollary 2.1.21. This implies that ker f = m × B
or ker f = A × m′, where m ⊂ A or m′ ⊂ B is a maximal ideal (this follows from the
fact that the ideals of A × B are precisely the subsets I × J , where I ⊂ A and J ⊂ B
are ideals). In particular the morphism f factors through exactly one of the projections
A×B → A or A×B → B.

Assume now that the k-algebra A×B is étale. Then we find a field extension `/k and
m+n morphisms of k-algebras A×B → `. Let a, resp. b, the number of those morphisms
which factor through the quotient A×B → A, resp. A×B → B. Then a ≤ n and b ≤ m
by Dedekind’s Lemma 4.2.1. We have just seen that a + b = n + m. We conclude that
a = n and b = m, showing that both A and B are étale k-algebras. �
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We recall that a element x of a ring A is called nilpotent if there exists an integer
n ∈ N such that xn = 0. A ring is called reduced its only nilpotent element is zero.

Lemma 4.4.2. Let A,B be rings. Then A×B is reduced if and only if both A and B
are reduced.

Proof. Certainly an element (a, b) ∈ A × B is nilpotent if and only if both a ∈ A
and b ∈ B are nilpotent. �

Lemma 4.4.3. In a reduced noetherian ring, the zero ideal is the intersection of a
finite family of pairwise distinct prime ideals.

Proof. Let A be a ring. We know that the ideal 0 contains a product of prime ideals
of A (Lemma 1.2.9), hence 0 = p1 · · · pn, for some prime ideals p1, . . . , pn of A (possibly
not pairwise distinct). If x ∈ p1 ∩ · · · ∩ pn, then xn ∈ p1 · · · pn, hence xn = 0, and thus
x = 0 as A is reduced. Thus p1 ∩ · · · ∩ pn = 0, where, upon removing duplicates, we may
now assume that pi 6= pj when i 6= j. �

Proposition 4.4.4. Every reduced finite-dimensional k-algebra is a product of finite
field extensions of k.

Proof. Let A be a reduced finite-dimensional k-algebra. Then A is noetherian by
Example 1.2.3, hence by Lemma 4.4.3 we may write 0 = p1 ∩ · · · ∩ pn, where p1, . . . , pn
are pairwise distinct prime ideals of A. Then pi + pj = A for i 6= j because pi is maximal
by Corollary 2.1.21. We conclude using Lemma 1.1.5 that A ' (A/p1) × · · · × (A/pn),
where each A/pi is a field extension of k (this is an isomorphism of A-algebras, hence in
particular of k-algebras). These field extensions have finite degrees, being quotients of
the finite-dimensional k-vector space A. �

When V is a k-vector space, we recall that a symmetric bilinear form ϕ : V × V → k
is called nondegenerate if the k-linear map

(4.4.a) V → Homk(V, k), x 7→ (y 7→ ϕ(x, y))

is bijective.

Lemma 4.4.5. Let V be a finite-dimensional k-vector space, and ϕ : V × V → k a
nondegenerate symmetric bilinear form. Then for each k-basis (y1, . . . , yn) of V we may
find a k-basis (x1, . . . , xn) of V such that ϕ(xi, yj) = δij for all i, j ∈ {1, . . . , n} (we use
the notation of (1.3.b)).

Proof. For each i ∈ {1, . . . , n}, consider the linear form y∗i ∈ Homk(V, k) given
by y∗i (yj) = δij for all j ∈ {1, . . . , n}. Since the map (4.4.a) is surjective, we may find
an element xi mapping to y∗i under (4.4.a), which means that ϕ(xi, yi) = δij for all
j ∈ {1, . . . , n}. It remains to prove that the system (x1, . . . , xn) is a k-basis of V . Assume
that

n∑
i=1

λixi = 0 ∈ V, with λ1, . . . , λn ∈ k.

Applying (4.4.a) yields
n∑
i=1

λiy
∗
i = 0 ∈ Homk(V, k).

Evaluating at yj ∈ V , for j ∈ {1, . . . , n}, shows that λj = 0. We have proved that the
system (x1, . . . , xn) is k-linearly independent, hence a k-basis by dimensional reasons. �
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Theorem 4.4.6. Let A be a finite-dimensional k-algebra. Then the following condi-
tions are equivalent:

(i) the k-algebra A is étale,
(ii) there exists a field extension `/k of finite degree such that A⊗k ` ' `n as `-algebras,

(iii) DA/k 6= 0 (see Definition 3.2.3),
(iv) the symmetric bilinear form A × A → k given by (x, y) 7→ TrA/k(xy) is nondegen-

erate,
(v) for every field extension `/k, then ring A⊗k ` is reduced,

(vi) A is isomorphic to a product of separable field extensions of k.

Proof. (i) ⇒ (ii) : This is Proposition 4.3.1.
(ii) ⇒ (iii) : The discriminant of the canonical `-basis of `n is 1, hence D`n/` 6= 0.

In view of Lemma 3.2.4, the assumption (ii) thus implies that D(A⊗k`)/` 6= 0. Using
Lemma 4.3.2 (iii) we deduce that DA/k 6= 0.

(iii) ⇔ (iv) : Let (e1, . . . , en) be a k-basis of A. Let (e∗1, . . . , e
∗
n) ∈ Homk(A, k) be the

dual basis, characterised by the equations e∗i (ej) = δij for i, j ∈ {1, . . . , n} (we use the
notation of (1.3.b)). Then in these basis, the matrix of the k-linear map A→ Homk(A, k)
sending x ∈ A to the linear form y 7→ TrA/k(xy) is given by (TrA/k(eiej)), so that its
determinant is the discriminant DA/k(e1, . . . , en) ∈ k. We thus see that DA/k(e1, . . . , en)
is nonzero if and only if the trace form given in (iv) is nondegenerate. But it follows from
Proposition 3.2.5 that DA/k(e1, . . . , en) 6= 0 if and only if DA/k 6= 0.

(iii)⇒ (v) : Let `/k be a field extension, and consider the `-algebra A′ = A⊗k `. We
have DA/k 6= 0 by (iii), hence DA′/` 6= 0 by Lemma 4.3.2 (iii). In view of the implication
(iii)⇒ (iv) established above (applied to the `-algebra A′), we deduce that the trace form
A′ × A′ → ` is nondegenerate. Thus for every nonzero element a ∈ A′, we may find an
element b ∈ A′ such that TrA′/`(ab) 6= 0 ∈ `. As the trace of a nilpotent element is zero
(see Proposition 3.1.3), the element ab ∈ A′ is not nilpotent, hence the element a ∈ A′ is
not nilpotent. We have proved that the ring A′ is reduced, as required.

(v) ⇒ (vi) : By Proposition 4.4.4, the k-algebra A is isomorphic to a product of field
extensions of k of finite degrees. It remains to prove that these are separable. Let K/k
be one of these field extensions, and x ∈ K. Let B = k[x] ⊂ K. Then the k-algebra B
is isomorphic to k[X]/P , where P is the minimal polynomial of x over k. For every field
extension `/k, the ring `[X]/P ' B ⊗k ` is reduced, being contained2 in K ⊗k `, which
is reduced because A⊗k ` is so (Lemma 4.4.2, in view of (4.3.b)). This implies that the
polynomial P ∈ k[X] is separable: indeed if P = (X − a)Q ∈ `[X] where Q ∈ `[X] and
a ∈ ` are such that Q(a) = 0, then P | Q2, hence the image of Q is a nonzero nilpotent
element of `[X]/P .

(vi) ⇒ (i) : This follows from Proposition 4.2.5 and Lemma 4.4.1. �

Corollary 4.4.7. Let F/k be a field extension of finite degree. Then the k-algebra
F is étale if and only if the field extension F/k is separable.

Proof. One implication has been proved in Proposition 4.2.5. So assume that the
k-algebra F is étale. Then by Theorem 4.4.6 we have an isomorphism of k-algebras
F ' A = F1 × · · · × Fr, where each Fi/k is a separable field extension. If r ≥ 2, then A

2here we use the following easy fact: if R → S is an injective morphism of k-algebras, then the

induced morphism of `-algebras R⊗k `→ S ⊗k ` is injective.
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is not a domain, because

(1, 0, 0, . . . , 0) · (0, 1, 0, . . . , 0) = 0 ∈ A.
As F is a domain, we must have r = 1. Thus F ' F1 as a k-algebra, hence F is a
separable extension of k. �

Proposition 4.4.8. Assume that the field k is perfect, for instance of characteristic
zero (Proposition 4.1.16) or finite (Proposition 4.1.17). Then a finite-dimensional k-
algebra is étale if and only if it is reduced.

Proof. An étale k-algebra is in particular reduced by the criterion (v) in Theo-
rem 4.4.6. Conversely, let A be a reduced finite-dimensional k-algebra. By Proposi-
tion 4.4.4, the k-algebra A is isomorphic to F1× · · ·×Fr, where F1, . . . , Fr are finite field
extensions of k. As k is perfect, each extension Fi/k is separable, hence each Fi is an
étale k-algebra by Proposition 4.2.5. We conclude using Lemma 4.4.1 that the k-algebra
F1 × · · · × Fr is étale, and thus so is A. �
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CHAPTER 5

The ring of integers

1. Integral closure in a separable extension

A fundamental property of the norm and trace functions is that they produce integers
out of integers:

Proposition 5.1.1. Let A be a domain, with fraction field K. Let L/K be a finite
separable extension, and x ∈ L an element which is integral over A. Then the coefficients
of the characteristic polynomial χL/K(x) ∈ K[X] are integral over A.

Proof. We apply Proposition 4.1.18 with F/k = L/K, and so find a field extension
E/K (= `/k) and n morphisms of K-algebras σ1, . . . σn : L → E. By Proposition 4.3.3
we have

(5.1.a) χL/K(x) =

n∏
i=1

(X − σi(x)) ∈ E[X].

Let C be the integral closure of A in E. Then the elements σ1(x), . . . , σn(x) ∈ E are
integral over A by Lemma 2.1.17, hence belong to C. Therefore the formula (5.1.a) implies
that χL/K(x) ∈ C[X], as required. �

Corollary 5.1.2. Let A be an integrally closed domain, with fraction field K. Let
L/K be a finite separable extension, and B the integral closure of A in L. Then

TrL/K(B) ⊂ A and NL/K(B) ⊂ A.

Proof. This follows from Proposition 5.1.1, since the maps TrL/K and NL/K are
given by certain coefficients of the characteristic polynomial (Lemma 3.1.8). �

Corollary 5.1.3. Let A be an integrally closed domain, with fraction field K. Let
L/K be a finite separable extension, and B the integral closure of A in L. Let b ∈ B.
Then

b ∈ B× ⇐⇒ NL/K(b) ∈ A×.

Proof. Assume that b ∈ B×. Then by Corollary 5.1.2 we have NL/K(b) ∈ A and

NL/K(b−1) ∈ A, and by Proposition 3.1.9

1 = NL/K(1) = NL/K(bb−1) = NL/K(b) NL/K(b−1).

In particular NL/K(b) ∈ A×.

Conversely, assume that NL/K(b) ∈ A×. Then by Proposition 5.1.1, we may write

χL/K(b) = Xn + an−1X
n−1 + · · ·+ a0, with a0, . . . , an−1 ∈ A.
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Recall that by Lemma 3.1.8 we have a0 = (−1)n NL/K(b), and so a0 ∈ A×. By the
Cayley–Hamilton theorem (Proposition 3.1.6) we have

bn + an−1b
n−1 + · · ·+ a0 = 0 ∈ L.

Therefore
b(bn−1 + an−1b

n−2 + · · ·+ a1) = −a0 ∈ A× ⊂ B×,
so that b ∈ B×. �

Lemma 5.1.4. Let A be an integrally closed domain, with fraction field K. Let L/K
be a finite field extension, and B the integral closure of A in L. Then every element of L
is of the form ba−1 with b ∈ B and a ∈ A r {0}. In particular L is the fraction field of
B.

Proof. Let x ∈ L. Then x is algebraic over K, hence satisfies an equation of the
form

amx
m + · · ·+ a0 = 0,

where a0, . . . , am ∈ K are not all zero. Observe that m > 0. We may assume that
am 6= 0. Multiplying with a (nonzero) common denominator of a0, . . . , am, we may
assume that a0, . . . , am ∈ A. Multiplying with the nonzero element am−1m ∈ A and setting
y = amx ∈ K, we obtain an equation

ym + am−1y
m−1 + amam−2y

m−2 + · · ·+ am−1m a0 = 0,

showing that the element y ∈ L is integral over A, hence belongs to B. So x = y(am)−1

is of the required form. �

Theorem 5.1.5. Let A be an integrally closed domain, with fraction field K. Let
L/K be a finite separable field extension, and B the integral closure of A in L. Then B
contains a K-basis of L. Moreover there exists an A-submodule F of L, which is free of
rank [L : K] and which contains B.

Proof. Let n = [L : K], and (e1, . . . , en) a K-basis of L. By Lemma 5.1.4, for each
i ∈ {1, . . . , n} we may find a nonzero element ai ∈ A such that xi = aiei ∈ B. Then
(x1, . . . , xn) is a K-basis (x1, . . . , xn) of L contained in B.

Recall that by Theorem 4.4.6 (and Proposition 4.2.5), the trace form L × L → K
is nondegenerate, hence by Lemma 4.4.5 we may find a K-basis (y1, . . . , yn) such that
TrL/K(xiyj) = δij for all i, j ∈ {1, . . . , n} (we use the notation of (1.3.b)). Let b ∈ B,
and write

b = b1y1 + · · ·+ bnyn, with b1, . . . , bn ∈ K.

Then for any i ∈ {1, . . . , n} we have bxi ∈ B (because b ∈ B and xi ∈ B), hence by
Proposition 5.1.1 we have TrL/K(bxi) ∈ A. But by K-linearity of TrL/K : L → K (see
Proposition 3.1.9), we have

TrL/K(bxi) = TrL/K

( n∑
j=1

bjxiyj

)
=

n∑
j=1

bj TrL/K(xiyj) = bi,

so that bi ∈ A. It follows that the element b lies in the A-submodule F of L generated
by the elements y1, . . . , yn. We have proved that B ⊂ F . The system (y1, . . . , yn) is
A-linearly independent in F , because its image in L is so (being K-linearly independent).
Therefore the system (y1, . . . , yn) is an A-basis of F , and so the A-module F is free of
rank n. �
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Corollary 5.1.6. Let A be a principal ideal domain, with fraction field K. Let L/K
be a finite separable field extension, and B the integral closure of A in L. Then B is a
free A-module of rank [L : K].

Proof. Let n = [L : K]. By Theorem 5.1.5, the A-module B is contained in a
submodule F of L, which is free of rank n, and in addition the subset B ⊂ L spans L as a
K-vector space. By the implication (ii) ⇒ (i) in Proposition 1.3.13 (applied with V = L)
the A-module B is free of rank n. �

Example 5.1.7. Let K be a number field of degree n = [K : Q]. Then the field ex-
tension K/Q is separable (Proposition 4.1.16), and the ring Z is a principal ideal domain.
Thus by Corollary 5.1.6 the Z-module OK is free of rank n.

Lemma 5.1.8. In the situation of Corollary 5.1.6, the following hold:

(i) Let (e1, . . . , en) be an A-basis of B. Then (e1, . . . , en) is a K-basis of L.
(ii) For any b ∈ B, we have

χB/A(b) = χL/K(b) ∈ A[X] ⊂ K[X].

(iii) For any system (x1, . . . , xn) ∈ Bn, we have

DB/A(x1, . . . , xn) = DL/K(x1, . . . , xn) ∈ A ⊂ K.

Proof. (i): Assume that
n∑
i=1

λiei = 0, with λ1, . . . , λn ∈ K.

Then we may find a nonzero element a ∈ A such that aλi ∈ A for each i ∈ {1, . . . , n}.
The A-linear independence of (e1, . . . , en) implies that aλi = 0, and therefore λi = 0, for
all i ∈ {1, . . . , n}. Thus the system (e1, . . . , en) is K-linearly independent in L, hence a
K-basis of L since dimK L = n.

(ii): We pick an A-basis (e1, . . . , en) of B. The coefficients of the matrix of the K-
linear map lb : L→ L in the K-basis (e1, . . . , en) are the images of those of the matrix of
the A-linear map lb : B → B in the A-basis (e1, . . . , en) under the inclusion A ⊂ K. Hence
the characteristic polynomial of the former is the image of the characteristic polynomial
of the latter under the inclusion A[X] ⊂ K[X].

(iii)): By (ii), the coefficients of the matrix (TrL/K(xixj)) in Mn(K) are the images of
those of the matrix (TrB/A(xixj)) in Mn(A). Taking determinants yields the statement.

�

Definition 5.1.9. The absolute discriminant of a number field K is the integer

DK/Q(x1, . . . , xn) = DOK/Z(x1, . . . , xn) ∈ Z,
where (x1, . . . , xn) is any Z-basis of OK (see Lemma 5.1.8). This integer does not depend
on the choice of the basis by Lemma 3.2.2, because Z× = {−1, 1} and so the square of
any invertible element of Z is 1.

Example 5.1.10. Consider the case of a quadratic field K = Q(
√
d), with d ∈ Z

square-free. Then Example 3.2.8 provides a computation of the absolute discriminant dK
of K:

dK =

{
d if d = 1 mod 4

4d if d = 2, 3 mod 4.
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2. Irreducibility of polynomials

The next proposition is a variant of the classical Gauss Lemma, which is sometimes
referred to as “Dedekind’s Prague Theorem”:

Proposition 5.2.1. Let A be an integrally closed domain with fraction field K. If
Q,R ∈ K[X] are monic polynomials such that QR ∈ A[X], then Q ∈ A[X] and R ∈ A[X].

Proof. Let L/K be a field extension where Q,R ∈ L[X] split into a product of
linear factors (Proposition 4.1.8). Then we may write in L[X]

(5.2.a) Q =

n∏
i=1

(X − αi) and R =

m∏
i=1

(X − βi),

where α1, . . . , αn, β1, . . . , βm ∈ L are the roots of Q,R (with repetitions allowed). These
roots are then integral over A (being roots of the monic polynomial QR ∈ A[X]), hence
belong to the integral closure B of A in L. The formulas (5.2.a) then show that Q,R ∈
B[X]. Since A is integrally closed (in K), we have B ∩ K = A. As Q,R ∈ K[X], we
conclude that Q,R ∈ A[X] = B[X] ∩K[X] ⊂ L[X]. �

Corollary 5.2.2. Let A be an integrally closed domain with fraction field K. Let
P ∈ A[X] be a monic polynomial. Then the polynomial P is irreducible in A[X] if and
only if it is irreducible in K[X].

Proof. If P is irreducible in K[X], it is so in A[X]. Indeed, if P = QR with
Q,R ∈ A[X], then one of the polynomials Q,R has degree zero (because P is irreducible
in K[X]), hence equals u ∈ A ⊂ A[X]. Since P is monic, it follows that u is a unit in A,
hence in A[X].

Conversely, assume that P is irreducible in A[X]. We assume that P = QR with
Q,R ∈ K[X], and show that one of Q,R is a unit in K[X]. Let q, r ∈ K be the leading
coefficients of Q,R. Since the polynomial P is monic, we have qr = 1. Replacing Q
with rQ, and R with qR, we may assume that the polynomials Q and R are monic.
By Proposition 5.2.1 we have Q,R ∈ A[X]. Since P is irreducible in A[X], one of the
elements Q,R must be a unit in A[X], and a fortiori also in K[X]. �

Corollary 5.2.3 (Eisenstein’s criterion). Let A be an integrally closed domain, and
p a prime ideal of A. Consider a monic polynomial

P = Xn + an−1X
n−1 + · · ·+ a0 ∈ A[X]

where a0, . . . , an−1 ∈ A. Assume that ai ∈ p for all i = 0, . . . , n − 1, but that a0 6∈ p2.
Then P is irreducible in K[X], where K is the fraction field of A.

Proof. By Corollary 5.2.2, it will suffice to prove that P is irreducible in A[X].
Let us write P = FG in A[X], with F,G monic. Consider the quotient ring C = A/p,
and denote by Q ∈ C[X] the image of a polynomial in Q ∈ A[X]. In C[X] we have
P = Xn (by the assumption) and P = F · G. As the ring C is a domain, it follows
from Lemma 3.1.4 that F and G are powers of X in C[X]. Thus F −Xr ∈ pA[X] and
G − Xs ∈ pA[X], where r = degF and s = degG. If F and G are both nonconstant,
then r > 0 and s > 0, and so F (0) ∈ p and G(0) ∈ p. Thus

a0 = P (0) = F (0)G(0) ∈ p2,

which contradicts the assumption. �
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3. Cyclotomic fields

In this section p will be a prime number, and ξ ∈ C a primitive p-th root of unity.
This means that ξp = 1 and ξ 6= 1. We investigate the cyclotomic field K = Q(ξ) ⊂ C,
and its ring of integers OK .

Consider the cyclotomic polynomial

(5.3.a) Φp = Xp−1 + · · ·+ 1 ∈ Z[X],

which satisfies the relation

(5.3.b) Xp − 1 = (X − 1)Φp ∈ Z[X].

The image of Φp in K[X] admits ξ, . . . , ξp−1 ∈ K as roots and thus

(5.3.c) Φp = (X − ξ) · · · (X − ξp−1) ∈ K[X].

Lemma 5.3.1. The polynomial Φp is irreducible in Q[X].

Proof. Set Y = X − 1 ∈ Z[X]. Then, in Z[X] we have

Y Φp = Xp − 1 = (Y + 1)p − 1 = Y p +

p−1∑
i=1

(
p

i

)
Y i.

Since Y is nonzero and Z[X] is a domain, we deduce that

(5.3.d) Φp = F (Y ) where F (T ) = T p−1 +

p−1∑
i=1

(
p

i

)
T i−1 ∈ Z[T ].

Now that binomial coefficient
(
p
i

)
is divisible by p for i = 1, . . . , p− 1 (classical exercise),

and
(
p
1

)
= p is not divisible by p2. Therefore by Eisenstein’s criterion (Corollary 5.2.3),

the polynomial F is irreducible in Q[T ]. Since Φp ∈ Q[X] is the image of F ∈ Q[T ]
under the ring isomorphism Q[T ] 7→ Q[X] given by T 7→ X − 1, this implies that Φp is
irreducible in Q[X]. �

Lemma 5.3.1 implies that the mapping X 7→ ξ induces an isomorphism of Q-algebras

(5.3.e) Q[X]/Φp ' K.
In particular K is a number field of degree p − 1, and a Q-basis of K is given by
1, ξ, . . . , ξp−2. It follows from (5.3.c) that we have morphisms of Q-algebras

σi : K → K, ξ 7→ ξi

for i ∈ {1, . . . , p− 1}. Those are pairwise distinct, and there are p− 1 = [K : Q] of them.
(So in the notation of Definition 4.2.2, we have n = p− 1, and k = Q, A = K, ` = K.)

Lemma 5.3.2. We have

(i) TrK/Q(1) = p− 1,

(ii) TrK/Q(ξj) = −1 for j ∈ {1, . . . , p− 1},

Proof. Observe that for j ∈ {0, . . . , p−1} we have σi(ξ
j) = ξij for all i ∈ {1, . . . , p−

1}. Using the formula of Proposition 4.3.3, we have

TrK/Q(ξj) =

p−1∑
i=1

σi(ξ
j) =

p−1∑
i=1

ξij = Φp(ξ
j)− 1.
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Now Φp(ξ
j) = 0 when j ∈ {1, . . . , p − 1} (see (5.3.c)), while Φp(ξ

0) = Φp(1) = p. This
yields (i) and (ii). (Alternatively (i) follows directly from Proposition 3.1.9 (iii).). �

Lemma 5.3.3. We have
NK/Q(ξ) = (−1)p−1.

Proof. By Proposition 4.3.3, we have

NK/Q(ξ) =

p−1∏
i=1

ξi = ξ1+···+(p−1) = ξ
p(p−1)

2 .

If p is odd, this equals (ξp)(p−1)/2 = 1 = (−1)p−1. If p = 2, this equals ξ = −1 =
(−1)p−1. �

Lemma 5.3.4. We have

NK/Q(1− ξ) = (1− ξ) . . . (1− ξp−1) = p.

Proof. We have

NK/Q(1− ξ) = (1− ξ) . . . (1− ξp−1) by Proposition 4.3.3

= Φp(1) by (5.3.c)

= p by (5.3.a). �

Lemma 5.3.5. We have
Z ∩ (1− ξ)OK = pZ.

Proof. By Lemma 5.3.4 we have pZ ⊂ Z ∩ (1− ξ)OK . If this inclusion were not an
equality, we would have Z = Z∩ (1− ξ)OK (as pZ is a maximal ideal of Z). In particular
1 = (1− ξ)α for some α ∈ OK . Taking the norms yields, in view of Lemma 5.3.4

1 = NK/Q(1) = NK/Q(1− ξ) ·NK/Q(α) = pNK/Q(α).

This is a contraction, as NK/Q(α) ∈ Z by Corollary 5.1.2 (in view of Remark 2.1.12). �

Lemma 5.3.6. We have

TrK/Q((1− ξ)OK) ⊂ pZ.

Proof. Let y ∈ OK . Then the elements σi(y) ∈ C, for i ∈ {1, . . . , p − 1}, are also
integral over Z by Lemma 2.1.17, hence belong to OK . Thus

TrK/Q((1− ξ)y) =

p−1∑
i=1

σi((1− ξ)y)

=

p−1∑
i=1

(1− ξi)σi(y)

= (1− ξ)
p−1∑
i=1

(ξi−1 + · · ·+ 1)σi(y)

belongs to (1− ξ)OK . On the other hand TrK/Q((1− ξ)y) ∈ Z by Corollary 5.1.2, and we
conclude using Lemma 5.3.5. �

Proposition 5.3.7. For the number field K = Q(ξ), we have Z[ξ] = OK , and
(1, . . . , ξp−2) is a Z-basis of Z[ξ].
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Proof. Since ξp−1 = −1− · · ·− ξp−2 (because Φp(ξ) = 0), it follows that the family
1, . . . , ξp−2 generates the Z-module Z[ξ]. This family is Z-linearly independent, because
it is Q-linearly independent in K. It remains to prove that Z[ξ] = OK . It will suffice to
show that OK ⊂ Z[ξ], since the other inclusion is clear.

For j ∈ N, let Qj ⊂ K be the Q-subspace generated by 1, . . . , ξj−1, and Zj ⊂ K the
Z-submodule generated by 1, . . . , ξj−1. We show by induction on j ≤ p− 1 that

Qj ∩ OK ⊂ Zj .
The proposition then follows from the case j = p− 1, since Qp−1 = K and Zp−1 = Z[ξ].

The case j = 0 is trivial, since Z0 = 0 = Q0. Assume that j ∈ {1, . . . , p − 1}. Let
y ∈ Qj ∩ OK , and write

y = a0 + a1ξ + · · ·+ aj−1ξ
j−1,

with a0, . . . , aj−1 ∈ Q. Then we have

(1− ξ)y = a0(1− ξ) + · · ·+ aj−1(ξj−1 − ξj).
Let us take the trace, having Lemma 5.3.2 in mind. This yields

TrK/Q((1− ξ)y) = a0p.

Since by assumption y ∈ OK , we have a0p ∈ pZ by Lemma 5.3.6, which implies that
a0 ∈ Z. Now ξ−1 = ξp−1 ∈ OK , and thus

ξ−1(y − a0) = a1 + · · ·+ aj−1ξ
j−2 ∈ Qj−1 ∩ OK .

By induction, this element belongs to Zj−1, hence

y ∈ a0Z + ξZj−1 ⊂ Zj .
This concludes the inductive proof. �

Lemma 5.3.8. The absolute discriminant dK of the number field K = Q(ξ) is (−1)
(p−1)(p−2)

2 pp−2;
in other words

dK =


1 if p = 2

pp−2 if p = 1 mod 4

−pp−2 if p = 3 mod 4.

Proof. Recall from (5.3.e) that the mapping X 7→ ξ induces an isomorphism of

k-algebras Q[X]/Φp
∼−→ K. By Proposition 4.3.5 (in view of Lemma 3.2.4), we have

(5.3.f) DOK/Z(1, ξ, . . . , ξp−2) = (−1)
(p−1)(p−2)

2 NK/Q(Φ′p(ξ)).

Taking the derivative of the formula (5.3.b), we have

pXp−1 = Φp + (X − 1)Φ′p.

Evaluating at X = ξ yields, as Φp(ξ) = 0,

(5.3.g) pξp−1 = (ξ − 1)Φ′p(ξ).

Observe that, by Proposition 3.1.9 and Lemma 5.3.4, we have

NK/Q(ξ − 1) = NK/Q((−1)(1− ξ)) = (−1)p−1 NK/Q(1− ξ) = (−1)p−1p.

Now, by Lemma 5.3.3 and Proposition 3.1.9, we have

NK/Q(ξp−1) = NK/Q(ξ)p−1 = ((−1)p−1)p−1 = (−1)p−1.
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Taking norms in (5.3.g) thus yields (in view of Proposition 3.1.9)

pp−1(−1)p−1 = (−1)p−1pNK/Q(Φ′p(ξ)),

and therefore
NK/Q(Φ′p(ξ)) = pp−2.

Plugging this equation into (5.3.f) yields the result. �
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CHAPTER 6

Dedekind domains

In this chapter, we introduce Dedekind domains, which are generalisations of principal
ideal domains. The ring of integers of a number field is often not a principal ideal domain,
but it is always a Dedekind domain. In such rings, unique factorisation of elements into
a product of irreducible ones does not necessarily hold; as a substitute we have a unique
factorisation of ideals into a product of prime ideals.

1. Integral closure of a Dedekind domain

Definition 6.1.1. An domain A is called a Dedekind domain if the following condi-
tions are satisfied:

(a) the ring A is integrally closed,
(b) the ring A is noetherian,
(c) every nonzero prime ideal of A is maximal.

Remark 6.1.2. In particular, every field is a Dedekind domain. In some references,
the definition of a Dedekind domain explicitly excludes the case of fields. In any case,
most statements involving Dedekind domains that we will formulate become vacuous or
trivial in the case of fields.

Remark 6.1.3. It follows from Lemma 1.2.10 that every nonzero ideal of a Dedekind
domain is contained in only finitely many prime ideals. (Indeed, all such prime ideals are
nonzero, hence maximal ideals; there are thus no inclusion relations between them.)

Proposition 6.1.4. Every principal ideal domain is a Dedekind domain.

Proof. Let A be a principal ideal domain. We know that the ring A is noetherian
(Proposition 1.2.6) and integrally closed (Proposition 2.1.11). To conclude the proof, we
let p be a nonzero prime ideal of A, and prove that p is a maximal ideal of A. We may
write p = aA for some nonzero element a ∈ A. If J is an ideal of A such that p ⊂ J , then
J = bA for some b ∈ A. Since a ∈ J , we may find c ∈ A such that a = bc. Now since
bc ∈ p and the ideal p is prime, we must have c ∈ p or b ∈ p. If b ∈ p, then p = J . If
c ∈ p, then c = ad for some d ∈ A, so that a = bc = abd. Thus a(1− bd) = 0, and since a
is nonzero and A is a domain, we have bd = 1. Therefore 1 ∈ J , and thus J = A. �

Remark 6.1.5. In particular Proposition 6.1.4 implies that the ring Z is Dedekind
domain.

Theorem 6.1.6. Let A be a Dedekind domain, with fraction field K. Let L/K be
a finite separable field extension, and B the integral closure of A in L. Then B is a
Dedekind domain with fraction field L, and finitely generated as an A-module.
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Proof. The fact that L is the fraction field of B was proved in Lemma 5.1.4. Thus,
by construction the ring B is an integrally closed domain (see Remark 2.1.16). Since
B is a submodule of a finitely generated A-module by Theorem 5.1.5, it follows from
Corollary 1.2.5 that B is a finitely generated A-module. Moreover Corollary 1.2.5 implies
that the A-module B is noetherian. In particular the ring B is noetherian (because ideals
of B are in particular A-submodules of B).

Now let q be a nonzero prime ideal of B. Set p = q ∩ A. Then the ideal p of A is
prime by Lemma 1.1.2, and nonzero by Lemma 2.1.19. As A is a Dedekind domain, the
ideal p is maximal. Now the ring extension A/p ⊂ B/q is integral (Lemma 2.1.18), and
A/p is a field. It then follows from Proposition 2.1.20 that B/q is a field, or equivalently
that q is a maximal ideal of B. �

Corollary 6.1.7. If K is a number field, then its ring of integers OK is a Dedekind
domain.

2. Fractional ideals

Definition 6.2.1. Let A be a domain, with fraction field K. A fractional ideal of
A is an A-submodule I of K such that there exists a nonzero element d ∈ A satisfying
dI ⊂ A. Such an element d will be called a common denominator of I.

Proposition 6.2.2. Let A be a noetherian domain, with fraction field K, and I an
A-submodule of K. Then I is a fractional ideal of A if and only if the A-module I is
finitely generated.

Proof. Assume that the A-module I is finitely generated, and let a1, . . . , an be a
family of elements generating I as an A-module. For each i ∈ {1, . . . , n} we may find an
element di such that diai ∈ A. Then it is easy to verify that the product d1 · · · dn is a
common denominator of I.

Conversely, assume that I is a fractional ideal of A. Let d ∈ A be nonzero and such
that dI ⊂ A. Then the ideal dI in the noetherian ring A is finitely generated, say by
a1, . . . , an ∈ dI. Then the elements d−1a1, . . . , d

−1an ∈ K belong to I (if x ∈ dI, then
d−1x ∈ I), and they generate the A-module I. �

If I, J are A-submodules of K, the notation IJ refers to the A-submodule of K
generated by the elements ij for i ∈ I and j ∈ J . Observe that if I and J are fractional
ideals, then so is IJ . This allows us to define the product

n∏
i=1

Ii = I1 · · · In

of fractional ideals I1, . . . , In, as well as the powers In for n ∈ N of a fractional ideal I.

Definition 6.2.3. We will denote by F(A) the set of nonzero fractional ideals of A.
This set forms a commutative monoid, where the operation is given by the product of
ideals, and the neutral element by the fractional ideal A itself.

3. Prime decomposition in Dedekind domains

In this section A will be a Dedekind domain with fraction field K.

Lemma 6.3.1. If I, J are nonzero fractional ideals of A such that IJ ⊂ I, then J ⊂ A.
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Proof. Let x ∈ J . Then xI ⊂ I, hence xnI ⊂ I for all n ∈ N by induction on n. Let
i be a nonzero element of I, and d ∈ Ar {0} be such that dI ⊂ A. Then dixn ∈ dI ⊂ A
for all n ∈ N, hence the A-submodule A[x] ⊂ K is a fractional ideal of A, with common
denominator di. By Proposition 6.2.2, this A-module is finitely generated, so that x ∈ K
is integral over A by Proposition 2.1.6. As the ring A is integrally closed, we deduce that
x ∈ A. �

Proposition 6.3.2. Every nonzero prime ideal of A is invertible in the monoid F(A).

Proof. Let p be a nonzero prime ideal of A. Since A is a Dedekind domain, the
ideal p is maximal. Set

(6.3.a) J = {x ∈ K|xp ⊂ A}.

Note that J is a fractional ideal of A: any nonzero element of p provides a common
denominator. Certainly A ⊂ J and pJ ⊂ A. Thus p = pA ⊂ pJ ⊂ A. As p is a maximal
ideal in A, we have either p = pJ , or pJ = A. If pJ = A, then J is the inverse of p, as
required. To conclude the proof, we assume that p = pJ and come to a contradiction. It
follows from

Since pJ ⊂ p, we have J ⊂ A by Lemma 6.3.1. Let us now choose a nonzero
element a ∈ p. Then the ideal aA contains a product p1 · · · pn of nonzero prime ideals
p1, . . . , pn by Lemma 1.2.9. We may assume that n is so chosen as to be minimal. Then
p1 · · · pn ⊂ aA ⊂ p, and so by Lemma 1.1.3 the ideal p contains the ideal pi for some
i ∈ {1, . . . , n}. As pi is nonzero and A is a Dedekind domain, the ideal pi is maximal,
and therefore p = pi. Let

I =
∏
j 6=i

pj .

Then I 6⊂ aA by minimality of n. We may thus find an element b ∈ I such that b 6∈ aA.
As pI = p1 · · · pn ⊂ aA, we have bp ⊂ aA, and so a−1bp ⊂ A. By (6.3.a), this implies that
a−1b ∈ J . On the other hand, as b 6∈ aA, we have a−1b 6∈ A. We conclude that J 6⊂ A,
which is the required contradiction. �

Corollary 6.3.3. Let p be a maximal ideal of A. Then for all n ∈ N, we have
pn 6= pn+1.

Proof. By Proposition 6.3.2, we find a fractional ideal I of A such that pI = A. If
pn = pn+1, then A = Inpn = Inpn+1 = p, a contradiction. �

Lemma 6.3.4. Every nonzero ideal of A is a product of nonzero prime ideals of A
(possibly not pairwise distinct).

Proof. Consider the set Φ of nonzero ideals of A which cannot be written as products
of nonzero prime ideals. To prove the statement, we assume that Φ is nonempty. Since the
ring A is noetherian, the set Φ admits a maximal element J (for the inclusion of ideals).
Then J 6= A (because A is the product of the empty family of nonzero prime ideals). The
family of ideals of A containing J and unequal to A is nonempty, hence admits a maximal
element m, since the ring A is noetherian. Observe that m is a maximal ideal of A. Thus
by Proposition 6.3.2 the fractional ideal m admit an inverse m−1 in the monoid F(A).
From the inclusion J ⊂ m, we deduce that Jm−1 ⊂ mm−1 = A, so that Jm−1 is an ideal
of A. From the inclusion m ⊂ A, we deduce that A = mm−1 ⊂ m−1, and so J ⊂ Jm−1.
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Next we claim that J 6= Jm−1. Indeed, assume that J = Jm−1. Then Lemma 6.3.1
implies that m−1 ⊂ A. Multiplying with m yields A ⊂ m, a contradiction.

Thus J ( Jm−1. From the choice of J , it follows that the ideal Jm−1 can be written
as a product of nonzero prime ideals. Multiplying with the nonzero prime ideal m shows
that the same is true for the ideal J , a contradiction. �

Theorem 6.3.5. Let A be a Dedekind domain and I a nonzero fractional ideal of A.
Let us denote by P the set of nonzero prime ideals of A. Then there exist integers np ∈ Z
for each p ∈ P such that the set {p ∈ P |np 6= 0} is finite, and

I =
∏
p∈P

pnp .

In addition, the integers np are uniquely determined by the fractional ideal I, and are all
positive if I is an ideal of A.

Proof. By assumption, there exists a nonzero element d ∈ A such that dI ⊂ A. By
Lemma 6.3.4, we may write

dI =
∏
p∈P

pmp and dA =
∏
p∈P

pdp .

Thus

I = I ·
∏
p∈P

pdp ·
∏
p∈P

p−dp = I · (dA) ·
∏
p∈P

p−dp = (dI) ·
∏
p∈P

p−dp =
∏
p∈P

pmp−dp ,

proving the “existence” part of the statement.
Let us now prove the “unicity” part. Let us assume that

(6.3.b)
∏
p∈P

pnp =
∏
p∈P

pmp ,

and prove that np = mp for all p ∈ P . Let P+ ⊂ P be the subset consisting of those
p such that np > mp, and P− ⊂ P the subset consisting of those p such that np < mp.
Then P+ ∩ P− = ∅, hence multiplying (6.3.b) with the fractional ideal∏

p∈PrP+

p−np

∏
p∈P+

p−mp =
∏

p∈P−

p−np

∏
p∈PrP−

p−mp

yields an equality of ideals

(6.3.c)
∏

p∈P+

pnp−mp =
∏

p∈P−

pmp−np .

Assume that the set P+ is nonempty. Then the set P+ contains an element q+, and the
left hand side of (6.3.c) is contained in q+. Therefore the ideal q+ contains the right hand
side of (6.3.c), and it follows from Lemma 1.1.3 that q+ contains some ideal q− ∈ P−.
But the ideal q− is maximal, which implies that q+ = q−. Therefore P+ ∩ P− 6= ∅, a
contradiction. We have proved that P+ = ∅. An analog argument shows that P− = ∅,
which concludes the proof of the unicity.

The “positivity” part of the statement follows from Lemma 6.3.4. �

Corollary 6.3.6. Let A be a Dedekind domain. The monoid F(A) of nonzero frac-
tional ideals of A is an abelian group. As such, it is freely generated by the nonzero prime
ideals of A.
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The next lemma will not be used, but may help clarify the situation:

Lemma 6.3.7. Let I a nonzero fractional ideal of A. Then the inverse of I in the
group F(A) is given by

I−1 = {x ∈ K|xI ⊂ A}.
Proof. Let J = {x ∈ K|xI ⊂ A}. Then clearly JI ⊂ A. On the other hand, by

Corollary 6.3.6 the fractional ideal I admits an inverse I−1, which satisfies I−1I = A. In
particular every x ∈ I−1 is such that xI ∈ A, and so I−1 ⊂ J . Therefore A = I−1I ⊂ JI.
We have proved that JI = A, hence J = I−1. �

Definition 6.3.8. Let A be a Dedekind domain, and I a nonzero fractional ideal
of A. For each nonzero prime ideal p of A, we will denote by vp(I) ∈ Z the integer np
appearing in Theorem 6.3.5.

Proposition 6.3.9. Let I, J be nonzero fractional ideals of A. Then:

(i) We have vp(IJ) = vp(I) + vp(J) for each nonzero prime ideal p of A.
(ii) We have J ⊂ I if and only if vp(I) ≤ vp(J) for each nonzero prime ideal p of A.

Proof. (i): This clear from the unicity in Theorem 6.3.5.
(ii): The relation J ⊂ I implies by Corollary 6.3.6 that I−1J ⊂ I−1I = A. Therefore

by (i), and the last words of Theorem 6.3.5, we have for each nonzero prime ideal p of A

0 ≤ vp(I−1J) = vp(J)− vp(I).

This proves one implication; the other one is easy. �

Proposition 6.3.10. Let I be a nonzero fractional ideal of A, and p a nonzero prime
ideal of A. Then the (A/p)-vector space I/Ip has dimension one.

Proof. The (A/p)-subspaces of I/Ip are its A-submodules, which are in bijection
with the A-submodules of I containing Ip, in other words the fractional ideals J of A such
that Ip ⊂ J ⊂ I (note that any A-submodule of I is a fractional ideal). Multiplying by
I−1, we see that p ⊂ I−1J ⊂ A for such fractional ideals J . Since the ideal p is maximal
in A, this implies that I−1J = p or I−1J = A, in other words that J = Ip or J = I.
Therefore the (A/p)-vector space I/Ip has exactly two subspaces, so it is of dimension
one �

Definition 6.3.11. Let A be a Dedekind domain, with fraction field K. A fractional
ideal of A is called principal if it is of the form dA for some d ∈ K. The subset of nonzero
principal fractional ideals forms a subgroup P(A) of F(A). The quotient group

C(A) = F(A)/P(A)

is called the ideal class group of A.

The ideal class group measures the failure of the ring A from being principal:

Proposition 6.3.12. A Dedekind domain A is a principal ideal domain if and only
if C(A) = 0.

Proof. Clearly if C(A) = 0, then each nonzero fractional ideal of A is principal, and
in particular each ideal of A is principal.

Conversely, assume that A is a principal ideal domain. Let I be a nonzero fractional
ideal of A. Pick a nonzero element d ∈ A such that dI ⊂ A. Then dI = aA for some
a ∈ A, so that the fractional ideal I = (ad−1)A is principal. Thus C(A) = 0. �
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Proposition 6.3.13. A Dedekind domain having only finitely many prime ideals is
a principal ideal domain.

Proof. Let A be a Dedekind domain. By Lemma 6.3.4, it suffices to prove that
each maximal ideal of A is principal. So let p be a maximal ideal of A. As p 6= p2

(Corollary 6.3.3), by prime avoidance (Lemma 1.1.4), we may pick x ∈ p such that
x 6∈ (p2∪q1∪ · · ·∪qn), where q1, . . . qn are the nonzero prime ideals of A different from p.
Then the decomposition of the ideal xA given by Theorem 6.3.5 can only be xA = p. �

Remark 6.3.14. Observe that the ring Z is an example of a principal ideal domain
having infinitely many prime ideals.

4. The absolute norm

In this section, we let K be a number field of degree n = [K : Q], and OK its
ring of integers. For any x ∈ OK , recall that the norm NK/Q(x) is an element of Z by
Proposition 5.1.1.

Proposition 6.4.1. Let x ∈ OK r {0}. Then

|NK/Q(x)| = card(OK/xOK).

Proof. Let us write B = OK and I = xOK . Recall from Corollary 5.1.6 that
the Z-module B is free of rank n = [K : Q]. Its submodule I is also free of rank n,
because multiplication by x induces an isomorphism of Z-modules B → I. Therefore by
Theorem 1.3.2 and its complement Proposition 1.3.13, we may find a Z-basis (e1, . . . , en)
of B and integers c1, . . . , cn ∈ N r {0} such that (c1e1, . . . , cnen) is a Z-basis of I. Then
the Z-module B/I is isomorphic to (Z/c1Z)× · · · × (Z/cnZ), so that

(6.4.a) card(OK/xOK) = card(B/I) = c1 · · · cn.

We have three basis of the Q-vector space K, given by (e1, . . . , en), (xe1, . . . , xen),
and (c1e1, . . . , cnen). We may thus define isomorphisms of Q-vector spaces u, v : K → K
by

u(ei) = ciei and v(ciei) = xei for all i = 1, . . . , n.

Then the composite v ◦ u is multiplication by x, hence det(v ◦ u) = NK/Q(x). Since
the matrix of u in the basis (e1, . . . , en) is diagonal with values (c1, . . . , cn), we have
detu = c1 · · · cn. To conclude the proof, in view of (6.4.a) and the fact that det(v ◦ u) =
(det v)(detu), it will suffice to show that det v ∈ {−1, 1}.

Observe that (c1e1, . . . , cnen) and (xe1, . . . , xen) are both Z-basis of I. Therefore the
map v : K → K restricts to an isomorphism of Z-modules w : I → I. Its determinant
detw is an invertible element of Z, hence detw ∈ {−1, 1}. Now any Z-basis B of I maps
to a Q-basis C of K under the inclusion I ⊂ K, and the coefficients of the matrix of v in
the basis C are the images of the coefficients of the matrix of w in the basis B under the
inclusion Z ⊂ Q. We deduce that det v is the image of detw under the inclusion Z ⊂ Q,
hence det v ∈ {−1, 1}, as required. �

Corollary 6.4.2. If I is a nonzero ideal of OK , then the group OK/I is finite.

Proof. Indeed, let x ∈ I r {0}. Then xOK ⊂ I, and thus the group OK/I is a
quotient of OK/xOK . The latter is finite by Proposition 6.4.1, hence so is the former. �



61 6. Dedekind domains

Definition 6.4.3. LetK be a number field, and I a nonzero ideal of OK . The absolute
norm (or simply the norm) of I, denoted N(I), is defined as the integer card(OK/I) (which
is finite by Corollary 6.4.2).

The following easy observation will be important:

Lemma 6.4.4. For any nonzero ideal I of OK , we have

N(I) · OK ⊂ I.

Proof. Let m = N(I). Then the finite group OK/I has order m, and in particular
m(OK/I) = 0, which means that mOK ⊂ I. �

Proposition 6.4.5. Let I, J be nonzero ideals of OK . Then

N(IJ) = N(I) N(J).

Proof. In view of Theorem 6.3.5, we may assume that J is a maximal ideal of OK .
The natural morphism OK/IJ → OK/I is surjective, and its kernel is I/IJ . Therefore
every element of OK/I admits exactly card(I/IJ) preimages in OK/IJ , so that

(6.4.b) card(OK/IJ) = card(OK/I) · card(I/IJ).

By Proposition 6.3.10 the (OK/J)-vector space I/IJ has dimension one, hence card(I/IJ) =
card(OK/J). The proposition then follows from (6.4.b). �
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CHAPTER 7

Localisation

In this section, we introduce a general tool — the localisation — which is very useful
in commutative algebra, and review several notions discussed through the lens of this
new tool. This will allow us to understand Dedekind domains as those domains which
are “locally” principal ideal domains.

We will not discuss the most general situation of modules over rings, but restrict
ourselves to the special case of submodules of the function field of a domain. This will
permit to follow a somewhat more concrete approach to the process of localisation.

1. Localising inside the fraction field

In this section A is a domain with fraction field K.

Definition 7.1.1. A subset S ⊂ A is called multiplicatively closed if 1 ∈ S, and for
all x, y ∈ S we have xy ∈ S.

For the rest of the section S will be a multiplicatively closed subset of A which does
not contain zero.

Definition 7.1.2. We define a subring

S−1A =
{a
s
,where a ∈ A, s ∈ S

}
⊂ K.

More generally, when M ⊂ K is an A-submodule, we define an S−1A-module

S−1M = M · (S−1A) =
{m
s
,where m ∈ A, s ∈ S

}
⊂ K.

Observe that S−1A is a domain which contains A, and that its fraction field is K.
Note that S−1A = A when S ⊂ A×, and that S−1A = K when S = Ar {0}.

Lemma 7.1.3. For every ideal J of S−1A, we have J = S−1(J ∩A).

Proof. Since J is an ideal of S−1A, we have

S−1(J ∩A) = (J ∩A) · (S−1A) ⊂ J · (S−1A) = J.

Conversely, let j ∈ J . Since j ∈ S−1A, we have sj ∈ A for some s ∈ S. Thus sj ∈ J ∩A,
so that j ∈ S−1(J ∩A). Therefore J ⊂ S−1(J ∩A). �

Lemma 7.1.4. Let I be an ideal of A. Then

S−1I = S−1A⇐⇒ S ∩ I 6= ∅.

Proof. If s ∈ S∩I, then 1 = s/s ∈ S−1I, and so S−1I = S−1A. Conversely assume
that S−1I = S−1A. Then 1 = i/s for some i ∈ I and s ∈ S. Thus s = i ∈ S ∩ I. �
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Lemma 7.1.5. Let p be a prime ideal of A such that S ∩ p = ∅. Then for any ideal
I of A, we have

I ⊂ p⇐⇒ S−1I ⊂ S−1p.

Proof. ⇒: This is clear.
⇐: Let i ∈ I. Then by assumption, we may find s ∈ S such that si ∈ p. Since p is a

prime ideal and s 6∈ p, it follows that i ∈ p, as required. �

Proposition 7.1.6. The following hold:

(i) For every prime ideal p of A such that S ∩ p = ∅, the ideal S−1p of S−1A is prime,
and satisfies (S−1p) ∩A = p.

(ii) Each prime ideal of S−1A is of the form S−1p, for a unique prime ideal p of A.
This prime ideal satisfies S ∩ p = ∅.

Proof. (i): We have S−1p 6= S−1A by Lemma 7.1.4. Let x, y ∈ S−1A be such that
xy ∈ S−1p. We may then find s1, s2, t ∈ S such that s1x, s2y ∈ A, and txy ∈ p. Set
s = s1s2t. Then (sx)(sy) ∈ p, hence, since p is a prime ideal of A, we must have sx ∈ p
or sy ∈ p. This implies that x ∈ S−1p or y ∈ S−1p. We have proved that S−1p is a prime
ideal of S−1A.

Let I = (S−1p) ∩A. Then clearly p ⊂ I. Conversely

S−1I = (S−1A) · I ⊂ (S−1A) · (S−1p) = S−1p,

hence I ⊂ p by Lemma 7.1.5.
(ii): Let q be a prime ideal of S−1A. Then p = q ∩ A is a prime ideal of A by

Lemma 1.1.2. By Lemma 7.1.3, we have q = S−1p.
Now let p′ be a prime ideal of A such that S−1p′ = q. As q 6= S−1A (because q

is assumed to be prime), we have S ∩ p′ = ∅ by Lemma 7.1.4. In particular, we have
S ∩ p = ∅. In addition, it follows from (i), applied to the prime ideal p′, that

p = q ∩A = (S−1p′) ∩A = p′,

which completes the proof of (ii). �

Corollary 7.1.7. The set of prime ideals q of S−1A is in bijection with the set of
prime ideals p of A such that S ∩ p = ∅. The mutually inverse maps are given by

q 7→ q ∩A and p 7→ S−1p,

and are compatible with the orders given by the inclusion of ideals.

Lemma 7.1.8. Let I ⊂ A be an ideal and π : A → A/I the quotient map. Assume
that π(S) ⊂ (A/I)×. Then the natural morphism of A-algebras

A/I → (S−1A)/(S−1I)

is an isomorphism.

Proof. Let a ∈ A∩S−1I. Then there exists s ∈ S such that sa ∈ I. The assumption
implies that we can find t ∈ A and i ∈ I such that st = 1 + i. We have

a = a(st− i) = (sa)t− ia ∈ I.

Thus A ∩ S−1I ⊂ I. As I ⊂ A ∩ S−1I, we have proved that A ∩ S−1I = I, which means
that the morphism is injective.
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Now consider an element a/s ∈ S−1A. Then as above we find t ∈ A and i ∈ I such
that st = 1 + i, and

ta− a

s
=
sta− a

s
=
ia

s
∈ S−1I,

which proves that ta ∈ A/I maps to a/s in (S−1A)/(S−1I). This shows that the mor-
phism is surjective. �

Proposition 7.1.9. Let L/K be a field extension, and let B be the integral closure
of A in L. Then S−1B is the integral closure of S−1A in L.

Proof. Observe that the fraction field of B is naturally contained in L, hence so is
its subring S−1B. Every element of S−1B is of the form b/s with b ∈ B and s ∈ S. Then
b satisfies an equation of the form

bn + an−1b
n−1 + · · ·+ a0 = 0, with a0, . . . , an−1 ∈ A.

Dividing by sn yields ( b
s

)n
+
an−1
s

( b
s

)n−1
+ · · ·+ a0

sn
= 0,

which shows that the element b/s is integral over S−1A.
Conversely, let x ∈ L be integral over S−1A. Then we may find a0, . . . , an−1 ∈ A,

s0, . . . , sn−1 ∈ S such that

xn +
an−1
sn−1

xn−1 + · · ·+ a0
s0

= 0.

Set s = s0 . . . sn−1 ∈ S. Multiplying the above equation by sn, we obtain

(7.1.a) (sx)n +
san−1
sn−1

(sx)n−1 + · · ·+ sna0
s0

= 0.

For each i ∈ {0, . . . , n− 1}, setting ti = s/si ∈ A ⊂ S−1A, we have

sn−iai
si

= ais
n−1−iti ∈ A ⊂ S−1A.

Therefore the equation (7.1.a) has coefficients in A ⊂ S−1A, which proves that sx is
integral over A, hence sx ∈ B, and thus x ∈ S−1B. �

Corollary 7.1.10. If the domain A is integrally closed, then so is S−1A.

Lemma 7.1.11. If the domain A is noetherian, then so is S−1A.

Proof. Consider a family of ideals Jn of S−1A, for n ∈ N, such that Jn ⊂ Jn+1 for
all n ∈ N. Then, as A is noetherian, we can find an integer s such that Jn ∩ A = Js ∩ A
for all n ≥ s. Thus S−1(Jn ∩ A) = S−1(Js ∩ A) for all n ≥ s. By Lemma 7.1.3, this
implies that Jn = Js for n ≥ s, which proves that the ring S−1A is noetherian. �

Proposition 7.1.12. If A is a Dedekind domain, then so is S−1A.

Proof. Then the domain S−1A is integrally closed by Proposition 7.1.9, and it is
noetherian by Lemma 7.1.11. The fact that every nonzero prime ideal of A is maximal
implies, by Corollary 7.1.7, that every nonzero prime ideal of S−1A is maximal. �

Definition 7.1.13. Let p a prime ideal of A. Then the set S = Ar p is multiplica-
tively closed and does not contain zero. The ring S−1A is called the localisation of A at
p, and is denoted by Ap. If M is an A-submodule of K, we write Mp instead of S−1M .
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A ring is called local if it possesses exactly one maximal ideal.

Lemma 7.1.14. Let p a prime ideal of A. Then the ring Ap is local with maximal
ideal S−1p = pAp.

Proof. Let S = Ar p. Recall from Corollary 7.1.7 that the prime ideals of S−1A =
Ap are of the form S−1p′, where S ∩ p′ = ∅. As S = A r p, this condition means that
p′ ⊂ p, so that S−1p′ ⊂ S−1p. Therefore the prime ideal S−1p in Ap contains every prime
ideal of Ap; it is thus the unique maximal ideal S−1p, and the ring Ap is local. �

Proposition 7.1.15. Let M be an A-submodule of K. Then

M =
⋂
p

Mp ⊂ K,

where p runs over the maximal ideals of A.

Proof. Let M ′ =
⋂

pMp. Certainly M ⊂M ′. Conversely, let x ∈M ′. The set

I = {y ∈ A|xy ∈M}.

is an ideal of A. Assume that I 6= A. Then the ideal I is contained in some maximal
ideal m of A. But x ∈ Mm by assumption, hence there exists b 6∈ m such that bx ∈ M .
This implies that b ∈ I, hence b ∈ m, a contradiction. Therefore we must have I = A. In
particular 1 ∈ I, so that x ∈M , and thus M = M ′. �

Corollary 7.1.16. Let M,N be A-submodules of K. Then M = N if and only if
Mp = Np for all maximal ideals p of A.

2. Discrete valuation rings

Definition 7.2.1. Let A be a domain with fraction field K. The ring A is called a
discrete valuation ring if there exists a surjective function v : K → Z ∪ {∞} such that:

(I) v(x) =∞⇐⇒ x = 0,
(II) v(xy) = v(x) + v(y) for all x, y ∈ K r {0},

(III) v(x+ y) ≥ min(v(x), v(y)) for all x, y ∈ K r {0},
(IV) A = {x ∈ K|v(a) ≥ 0}.

Lemma 7.2.2. Let A be a discrete valuation ring with fraction field K. Let a ∈ K.
Then

(i) If a 6= 0, then v(a−1) = −v(a).
(ii) We have a ∈ A× if and only if v(a) = 0.

Proof. (i): We have v(1) = v(1·1) = v(1)+v(1) (by the axiom (II)), hence v(1) = 0.
Thus, by the axiom (II) we deduce that v(a) + v(a−1) = v(1) = 0.

(i): Since v(0) =∞, we may assume that a 6= 0. Observe that a ∈ A× if and only if
a, a−1 ∈ A. By the axiom (IV) this holds if and only if v(a) ≥ 0 and v(a−1) ≥ 0. Since
v(a) = −v(a−1) by (i), this is equivalent to the conditions v(a) = v(a−1) = 0. �

Remark 7.2.3. A discrete valuation ring is never a field: indeed Lemma 7.2.2 prevents
the map v from being surjective when A is a field. In certain alternative definitions of
discrete valuations rings present in the literature, the surjectivity assumption for v is
sometimes dropped, and thus discrete valuation rings are allowed to be fields.
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Definition 7.2.4. Let A be a discrete valuation ring. An element π ∈ A such that
v(π) = 1 is called a uniformising parameter. Observe that such an element always exists:
indeed as v : K → Z ∪ {∞} is surjective we may find π ∈ K such that v(π) = 1, and the
axiom (IV) ensures that π ∈ A.

As in the case of fields, it is easy to list the ideals of a discrete valuation ring:

Proposition 7.2.5. Let A be a discrete valuation ring, and π a uniformising param-
eter. Then every nonzero ideal of A is of the form πnA for some n ∈ N.

Proof. Let I be a nonzero ideal of A. Let n = min(v(I)) ∈ N. Then for any
x ∈ I r {0}, we have by the axiom (II) and Lemma 7.2.2 (i)

(7.2.a) v(xπ−n) = v(x)− v(πn) = v(x)− n.
Since v(x) ≥ n (by the choice of n), we deduce from (7.2.a) that v(xπ−n) ≥ 0, so that
xπ−n ∈ A by the axiom (IV), and thus x ∈ πnA. We have proved that I ⊂ πnA.

Let now x ∈ I be such that v(x) = n. Then (7.2.a) implies that v(xπ−n) = 0,
hence xπ−n ∈ A× by Lemma 7.2.2. In particular πn ∈ xA ⊂ I. We have proved that
I = πnA. �

Corollary 7.2.6. A discrete valuation ring is a principal ideal domain.

Corollary 7.2.7. A discrete valuation ring is local. Its maximal ideal is generated
by any uniformising parameter.

Proof. Let A be a discrete valuation ring, and π ∈ A a uniformising parameter.
Certainly the ideal πA is the unique maximal element of the set {πnA|n ∈ Nr {0}}, and
the corollary follows from Proposition 7.2.5. �

Proposition 7.2.8. Let A be a ring. The following are equivalent:

(i) A is a field or a discrete valuation ring,
(ii) A is a local principal ideal domain,

(iii) A is a local Dedekind domain.

Proof. (i) ⇒ (ii) : A field is certainly a local principal ideal domain. Assume that
A is a discrete valuation ring. The ring A is local by Corollary 7.2.7, and a principal ideal
domain by Corollary 7.2.6.

(ii) ⇒ (iii) : This has been proved in Proposition 6.1.4.
(iii) ⇒ (i) : Let m be the maximal ideal of the ring A, and K its fraction field. We

assume that A is not a field, so that m is nonzero. Observe that m is then the unique
nonzero prime ideal of A, and therefore by Theorem 6.3.5 every nonzero fractional ideal
of A is of the form mk for a unique element k ∈ Z. For x ∈ K r {0}, we define an integer
v(x) ∈ Z by the condition xA = mv(x), and we set v(0) = ∞. Then clearly we have
v(xy) = v(x) + v(y) for all x, y ∈ K r {0}. Moreover for any nonzero x ∈ K we have

v(x) ≥ 0⇐⇒ (xA = mk for some k ∈ N)⇐⇒ xA ⊂ A⇐⇒ x ∈ A.
For x, y ∈ K r {0}, we have

mv(x+y) = (x+ y)A ⊂ xA+ yA = mv(x) + mv(y) ⊂ mmin(v(x),v(y)),

and so v(x+ y) ≥ min(v(x), v(y)).
As m 6= 0, we have m2 6= m by Corollary 6.3.3. So we may pick an element π ∈ mrm2.

As πA ⊂ m but πA 6⊂ m2, we must have v(π) = 1. The validity of the axiom (II) implies
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that v : K× → Z is a group morphism, which must thus be surjective. Therefore the ring
A is a discrete valuation ring. �

Corollary 7.2.9. In a discrete valuation ring, there are exactly two prime ideals.

Proof. Let A be a discrete valuation ring. As A is a Dedekind domain by Proposi-
tion 7.2.8, every nonzero prime ideal of A is maximal. As A is local by Corollary 7.2.7, it
follows that the number of prime ideals in A is at most two. If it is one, then the zero ideal
is maximal, which means that A is a field, a case which is excluded (see Remark 7.2.3). �

Proposition 7.2.10. Let A be a noetherian domain. Then A is a Dedekind domain
if and only if the ring Ap is a field or a discrete valuation ring for each maximal ideal p
of A.

Proof. Assume that A is a Dedekind domain. For each maximal ideal p of A, the
ring Ap is a local Dedekind domain by Lemma 7.1.14 and Proposition 7.1.12, and thus a
field or a discrete valuation ring by Proposition 7.2.8.

Conversely, assume that Ap is a field or discrete valuation ring for each maximal ideal
p of A. Let q be a nonzero prime ideal of A. Pick a maximal ideal p of A such that q ⊂ p
(Lemma 1.2.7). Then qAp is a nonzero prime ideal of Ap by Proposition 7.1.6. Since Ap is
a Dedekind domain (Proposition 7.2.8), the ideal qAp is maximal in Ap, hence coincides
with pAp by Lemma 7.1.14. As (qAp)∩A = q and (pAp)∩A = p (see Proposition 7.1.6),
we deduce that p = q, and thus the ideal q is maximal in A

Let now B be the integral closure of A in K. Then by Proposition 7.1.9 the ring Bp

is the integral closure of Ap in K for each maximal ideal p of A, and as Ap is integrally
closed (being a Dedekind domain by Proposition 7.2.8) we have Ap = Bp in K. Therefore
A = B by Corollary 7.1.16. This proves that the domain A is integrally closed, and A is
thus a Dedekind domain (recall that the ring A was assumed to be noetherian). �
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CHAPTER 8

Lattices in real vector spaces

1. Discrete subgroups of Rn

Definition 8.1.1. A subset S of Rn is called discrete if its induced topology is
discrete. This means that for every s ∈ S, there exists an open subset U ⊂ Rn such that
{s} = S ∩ U .

Lemma 8.1.2. Let S be a subset of Rn. Then the following conditions are equivalent:

(i) The subset S ⊂ Rn is closed and discrete.
(ii) For every bounded subset B ⊂ Rn the intersection B ∩ S is finite.

Proof. (i) ⇒ (ii): Enlarging B, we may assume that B is closed (observe that B
is contained in some closed ball centered at the origin). Then B is compact, and so is
S ∩ B (because S is closed). For each s ∈ S, pick an open subset Us ⊂ Rn such that
S ∩ Us = {s}. Then S ∩ B is contained in the union of the open subsets Us for s ∈ S,
hence by compactness we may find a finite subset F ⊂ S such that S ∩B is contained in
the union of the subsets Us for s ∈ F . Thus

S ∩B ⊂
( ⋃
s∈F

Us

)
∩ S ∩B ⊂

⋃
s∈F

(Us ∩ S) =
⋃
s∈F
{s} = F,

hence S ∩B is finite.
(ii) ⇒ (i): Let s ∈ S. Then s is contained in a bounded open subset V of Rn (e.g.

some open ball centered in s). As V ∩ S is finite, we may write (V ∩ S) r {s} = F with
F finite, and in particular closed in Rn. The set U = V r F is then open in Rn, and
satisfies U ∩ S = {s}. We have proved that S is discrete.

For each x ∈ Rn, pick a bounded open neighborhood Ux of x (e.g. some open ball
centered in x). Then for each x ∈ Rn, the set Ux∩S is finite by assumption, hence closed
in Rn. Thus Vx = Ux r (Ux ∩ S) is an open subset of Rn. Therefore the subset

Rn r S =
⋃
x∈Rn

Vx

is open in Rn, and so S is closed in Rn. �

Lemma 8.1.3. Every discrete subgroup of Rn is closed.

Proof. Let H be a discrete subgroup of Rn, and let g be an element of the closure
of H in Rn. Pick an open subset U ⊂ Rn such that U ∩ H = {0}. Replacing U with
U ∩ (−U), we may assume that U = −U . Then g+U is an open neighborhood of g, and
as g is in the closure of H, we must have

(g + U) ∩H 6= ∅.
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Thus we may find an element h ∈ H which can be written as h = g + u with u ∈ U .
Then g ∈ h + (−U) = h + U . Let U◦ = U r {0}; this is an open subset of Rn. Then
U◦∩H = ∅, and thus (h+U◦)∩H = ∅. Therefore h+U◦ is an open subset of Rn which
does not meet H, hence the subset h+ U◦ does not meet the closure of H. In particular
g 6∈ h+ U◦. As g ∈ h+ U , we must have g = h, and in particular g ∈ H. �

Theorem 8.1.4. Let H be a subgroup of Rn. The following conditions are equivalent:

(i) the subset H ⊂ Rn is discrete,
(ii) the subgroup H ⊂ Rn is generated by a set of R-linearly independent vectors in Rn.

Proof. (ii) ⇒ (i) : Let x1, . . . , xm be R-linearly vectors in Rn, and H the subgroup
of Rn generated by these elements. Note that m ≤ n. While proving that H is discrete,
we may enlarge H (because a subset of a discrete subset is discrete). Therefore after
completing the family (x1, . . . , xm) into an R-basis of Rn, we may assume that m =
n. Consider the R-linear automorphism ϕ of Rn mapping the basis (x1, . . . , xn) to the
canonical basis (c1, . . . , cn) of Rn. For any h ∈ H, consider the open ball Bh centered at
ϕ(h) of radius 1 for the euclidean metric. Consider the open subset Uh = ϕ−1Bh of Rn.

We claim that Uh ∩H = {h}, which will conclude the proof that the subset H ⊂ Rn
is discrete. Indeed, let x ∈ Uh. Then

ϕ(x) = ϕ(h) +

n∑
i=1

λici,

where λ1, . . . , λn ∈ R are such that λ21 + · · · + λ2n < 1, and in particular λ1, . . . , λn 6∈ Z.
Since ϕ is injective and ci = ϕ(xi) for i ∈ {1, . . . , n}, we deduce that

x− h =

n∑
i=1

λixi

If x 6= h, then there exists j ∈ {1, . . . , n} such that λj 6= 0, and thus λj 6∈ Z. Since every
element of H is a Z-linear combination of (x1, . . . , xn), and (x1, . . . , xn) is R-linearly
independent, this implies that x− h 6∈ H, or equivalently x 6∈ H. This proves the claim.

(i)⇒ (ii) : Assume that the subset H ⊂ Rn is discrete. Choose a family of R-linearly
independent vectors e1, . . . , er ∈ H, in such a way that r is maximum (note that in any
case we have r ≤ n). Consider the parallelotope

P =
{ r∑
i=1

αiei|0 ≤ αi ≤ 1
}
⊂ Rn.

Then P is bounded, hence P ∩H is finite by Lemma 8.1.2 and Lemma 8.1.3. Let x ∈ H.
By maximality of r, we may write

x =

r∑
i=1

λiei,

with λ1, . . . , λr ∈ R. For j ∈ Z, set

xj = jx−
r∑
i=1

bjλicei ∈ H.
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Here, for λ ∈ R, we denote by bλc ∈ Z the integer such that bλc ≤ λ < bλc+ 1. Then

(8.1.a) xj =

r∑
i=1

(jλi − bjλic)ei ∈ P ∩H.

Note that ei ∈ P ∩H for each i ∈ {1, . . . , r}. As

x = x1 +

r∑
i=1

bλicei,

it follows that the Z-module H is generated by P ∩H, hence is finitely generated.
Now as P ∩H is finite and Z infinite, we may find two distinct integers j, k ∈ Z such

that xj = xk. Thus by (8.1.a), we obtain

jλi − bjλic = kλi − bkλic for all i = 1, . . . , r,

hence, for all i = 1, . . . , r

λi =
bjλic − bkλic

j − k
∈ Q.

Therefore every element of H is a Q-linear combination of e1, . . . , er. Thus for every
element h ∈ H, we may find a nonzero integer dh ∈ H such that dh · h ∈ Z, where
Z ⊂ Rn is the Z-submodule generated by the elements e1, . . . , er. If F ⊂ H is a finite
subset which generates the Z-module H (e.g. F = P ∩H), we may thus find a nonzero
integer d ∈ Z such that dh ∈ Z for every h ∈ F . Then dH ⊂ Z. Note that the
family (e1, . . . , er) is a Z-basis of Z, hence Z is a free Z-module of rank r, so that by
Theorem 1.3.2 the Z-module dH ⊂ Z is free of rank s, where s ≤ r. The multiplication-
by-d map induces an isomorphism of Z-modules H

∼−→ dH, hence the Z-module H is also
free of rank s. Applying Theorem 1.3.2 and Proposition 1.3.13 to the inclusion Z ⊂ H,
we deduce that r ≤ s. We conclude that r = s, and therefore the Z-module H is free of
rank r.

Let (f1, . . . , fr) be a Z-basis of H. The inclusions dH ⊂ Z ⊂ H show that Z and
H generate the same R-subspace V of Rn. In other words the families (e1, . . . , er) and
(f1, . . . , fr) generate the R-vector space V . Since they have the same number of elements,
and the first family is R-linearly independent, so is the second family. �

Corollary 8.1.5. Every discrete subgroup of Rn is a free Z-module of rank m, with
m ≤ n.

Proof. Let H be a discrete subgroup of Rn. By Theorem 8.1.4 the group H is gen-
erated by a system of R-linearly independent vectors of Rn. Such system is in particular
Z-linearly independent, and is therefore a Z-basis of H. The number of elements in this
system is at most n (as is the case for any R-linearly independent system in Rn). �

Example 8.1.6. The subgroup of R generated by 1 and
√

2 is free of rank two as a
Z-module. It follows from Corollary 8.1.5 that this subgroup is not discrete.

2. Minkowski’s Theorem

Definition 8.2.1. A subgroup of Rn is called a lattice if it is generated as a Z-module
by an R-basis of Rn.
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Thus by Theorem 8.1.4 a lattice is always a discrete subgroup of Rn. As a Z-module
a lattice is free of rank n.

For each R-basis e = (e1, . . . , en) of Rn, we consider the subset

Pe =
{ n∑
i=1

αiei|0 ≤ αi < 1
}
⊂ Rn.

Remark 8.2.2. Let H be a lattice in Rn. Then there exists an R-basis e = (e1, . . . , en)
of Rn such that e is a Z-basis of H. The subset Pe is called a fundamental domain of H
in this case. Note that every vector in Rn is congruent modulo H to a unique vector in
Pe.

We will denote by µ the Lebesgue measure on Rn. We will use the following properties
of µ, where S ⊂ Rn is a measurable subset:

(1) (“invariance by translation”) For any t ∈ Rn, we have µ(S) = µ(t+ S).
(2) (“scaling”) If ϕ : Rn → Rn is an R-linear map, then µ(ϕ(S)) = |detϕ| · µ(S).
(3) (“σ-additivity”) If S is the disjoint union of measurable subsets Sn for n ∈ N, then

µ(S) = lim
n→∞

n∑
i=0

µ(Si) ∈ R ∪ {∞}.

Lemma 8.2.3. Let H be a lattice in Rn, and e = (e1, . . . , en) an R-basis of Rn which
generates the Z-module H. Then the subset Pe ⊂ Rn is measurable, and the number µ(Pe)
does not depend on the choice of the basis e. It is given by

µ(Pe) = |det(aij)| ∈ R,
where ei = (ai1, . . . , ain) ∈ Rn, for i = 1, . . . , n.

Proof. The subset Pe is the intersection of the open subset {
∑n
i=1 αiei|−1 < αi < 1}

with the closed subset {
∑n
i=1 αiei|0 ≤ αi}, hence is measurable. Let c = (c1, . . . , cn) be

the canonical basis of Rn, and consider the R-linear automorphism ϕ of Rn given by
mapping ci to ei for i ∈ {1, . . . , n}. The matrix of ϕ in the canonical basis c is (aij), so
that by the property (2) of the Lebesgue measure recalled above, we have

µ(Pe) = |detϕ| · µ(Pc) = |det(aij)|,
as µ(Pc) = 1.

Now, let f = (f1, . . . , fn) be another R-basis of Rn which generates the Z-module H,
and consider the R-linear automorphism ψ of Rn such that ψ(ei) = fi for all i ∈ {1, . . . , n}.
Then ψ(Pe) = Pf , and thus the property (2) above implies that

(8.2.a) µ(Pf ) = |detψ| · µ(Pe).

Since e and f are both Z-basis of H, there are elements αij , βij ∈ Z for i, j ∈ {1, . . . , n}
such that, for all j ∈ {1, . . . , n}

fj =

n∑
i=1

αijei and ej =

n∑
i=1

βijfi.

In the basis e of Rn, the matrix of ψ is (αij), while that of ψ−1 is (βij). Since these
matrices belong to Mn(Z) ⊂ Mn(R), it follows that detψ ∈ Z× = {1,−1}, hence (8.2.a)
shows that µ(Pf ) = µ(Pe). �
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Definition 8.2.4. When H is a lattice in Rn, its volume v(H) is defined as the
number µ(Pe) ∈ R, for any R-basis e of Rn which generates the Z-module H.

Lemma 8.2.5. Let L ⊂M be lattices in Rn. Then the group M/L is finite, and

v(L) = v(M) · card(M/L).

Proof. Since the Z-modules L,M are both free of rank n, it follows from Theo-
rem 1.3.2 and its complement Proposition 1.3.13 that we may find a Z-basis (e1, . . . , en)
of M and nonzero integers c1, . . . , cn ∈ N such that f = (c1e1, . . . , cnen) is a Z-basis of
L. Then M/L ' (Z/c1Z)× · · · × (Z/c2Z) is finite, and

card(M/L) = |c1 · · · cn|.

Consider the R-linear automorphism ϕ of Rn given by ϕ(ei) = ciei for i ∈ {1, . . . , n}.
Then by by the property (2) of the Lebesgue measure recalled above we have

v(L) = µ(Pf ) = |detϕ| · µ(Pe) = |c1 · · · cn| · v(M) = card(M/L) · v(M). �

Theorem 8.2.6 (Minkowski). Let H be a lattice in Rn and S ⊂ Rn a measurable
subset. Assume that µ(S) > v(H). Then there exist two distinct elements x, y ∈ S such
that x− y ∈ H.

Proof. Let e be an R-basis of Rn which generates the Z-module H. Recall from
Remark 8.2.2 that Rn is the disjoint union of the subsets h + Pe where h runs over H.
Observe that the set H is countable, being in bijection with Zn. Pick a bijection N ∼−→ H
and denote it by i 7→ hi. Then by σ-additivity (recalled in (3) above) we have

(8.2.b) µ(S) = lim
n→∞

( n∑
i=0

µ(S ∩ (hi + Pe))
)
∈ R ∪ {∞}.

By invariance of the Lebesgue measure under translation (recalled in (1) above), we have
for all i ∈ N

(8.2.c) µ(S ∩ (hi + Pe)) = µ((−hi + S) ∩ Pe).

If the conclusion of the theorem does not hold, then the subsets −hi + S ⊂ Rn for i ∈ N
are pairwise disjoint, so that by σ-additivity again

µ(Pe) ≥ lim
n→∞

( n∑
i=0

µ((−hi + S) ∩ Pe)
)
∈ R ∪ {∞}.

The left-hand side is v(H) by definition, and the right-hand side is µ(S) by (8.2.b) and
(8.2.c). Thus v(H) ≥ µ(S), contradicting the assumption. �

Corollary 8.2.7. Let H be a lattice in Rn, and S ⊂ Rn a measurable subset, which
is convex and symmetric with respect to zero. Assume that one of the following conditions
holds:

(i) µ(S) > 2nv(H),
(ii) µ(S) ≥ 2nv(H) and S is compact.

Then the subset S ∩H ⊂ Rn contains a nonzero vector.
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Proof. Assume (i), and set S′ = 2−1S ⊂ Rn. Then, by the property (2) of the
Lebesgue measure,

µ(S′) = 2−nµ(S) > v(H),

hence by Theorem 8.2.6 there exist x, y ∈ S′ such that x− y ∈ H r {0}. Set z = x− y.
Then z ∈ H, and

z = x− y =
1

2
(2x+ (−2y))

belongs to S by symmetry and convexity. This proves the corollary in this case.
Assume (ii). We claim first that

(8.2.d) S =
⋂

k∈Nr{0}

(1 + k−1)S.

Indeed, one inclusion is clear. Conversely, let us assume that x ∈ (1 + k−1)S for all
k ∈ N r {0} and prove that x ∈ S. If x 6∈ S, then as Rn r S is open (S being closed
by assumption) we can find an element ε > 0 such that S does not meet the open ball
centered in x of radius ε. As S is bounded, it is contained in an open ball centered at 0
of radius λ, for some λ > 0. Now pick an integer ` ≥ λ/ε. Then x = (1 + `−1)y for some
y ∈ S, hence y − x = −`−1y, so that y belongs to the open ball centered at x of radius
`−1λ. Since `−1λ ≤ ε and y ∈ S, we have obtained a contradiction, proving the claim
(8.2.d).

For k ∈ Nr {0}, we have by the property (2) of the Lebesgue measure

µ((1 + k−1)S) = (1 + k−1)nµ(S) > 2nv(H),

hence it follows from (i) that the subset

Uk = (H r {0}) ∩ (1 + k−1)S ⊂ Rn

is nonempty. In addition the set Uk is finite, because H is a discrete subgroup and
(1 + k−1)S is bounded (by Lemma 8.1.2 and Lemma 8.1.3). Therefore the intersection⋂

k∈Nr{0}

Uk ⊂ Rn

is nonempty, as every decreasing (for the inclusion relation) family of nonempty finite
sets is stationary. Now⋂

k∈Nr{0}

Uk =
⋂

k∈Nr{0}

(
(H r {0}) ∩ (1 + k−1)S

)
⊂ (H r {0}) ∩

( ⋂
k∈Nr{0}

(1 + k−1)S
)

= (H r {0}) ∩ S,
where we have used (8.2.d) for the last equality. �

Remark 8.2.8. One may prove that a convex subset of Rn is automatically measur-
able.
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CHAPTER 9

Ideal class group and units in number fields

1. The canonical embedding

When K is a number field of degree n = [K : Q], there are by Lemma 4.2.4 (in view
of Proposition 4.2.5) exactly n morphisms of Q-algebras σ1, . . . , σn : K → C (here we use
the fact that the field C is algebraically closed). If ι : C→ C is the complex conjugation,
then for every i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n} such that ι ◦ σi = σj . We have
σi(K) ⊂ R if and only if ι ◦ σi = σi. If σi(K) 6⊂ R, then there exists j 6= i such that
σj = ι ◦ σi. In particular the number of indices i ∈ {1, . . . , n} such that σi(K) 6⊂ R is
even. Let us write

r1 = card{i ∈ {1, . . . , n}|σi(K) ⊂ R},
2r2 = card{i ∈ {1, . . . , n}|σi(K) 6⊂ R},

so that

n = r1 + 2r2.

We reorder the σi’s in such a way that σ1(K), . . . , σr1(K) ⊂ R, and ι ◦ σi = σi+r2 for
i ∈ {r1 + 1, . . . , r1 + r2}. This yields a ring morphism

σ : K → Rr1 × Cr2 x 7→ (σ1(x), . . . , σr1+r2(x)).

Since K is a field and Rr1 × Cr2 6= 0 (as n ≥ 1), it follows that the ring morphism σ is
injective. We will often identify the group Rr1×Cr2 with Rn (note that this identification
does not respect the ring structures).

Let dK be the absolute discriminant of K (see Definition 5.1.9). Recall from Propo-
sition 4.3.4 that we have

(9.1.a) dK = det(σi(xj))
2,

where (x1, . . . , xn) is any Z-basis of OK .

Proposition 9.1.1. Let E be a subgroup of K. Assume that E is free of rank n as
a Z-module, with basis (x1, . . . , xn). Then σ(E) is a lattice in Rn, and its volume is

v(σ(E)) =
|det(σi(xj))|

2r2
.

Proof. For a given j ∈ {1, . . . , n}, the coordinates of the vector σ(xj) in the canon-
ical basis of Rn are
(9.1.b)

(σ1(xj), . . . , σr1(xj),R(σr1+1(xj)), I(σr1+1(xj)), . . . ,R(σr1+r2(xj)), I(σr1+r2(xj))),

where R and I denote the real and imaginary parts respectively. Consider the matrix
M ∈ Mn(R) whose j-th column is (9.1.b). We view M ∈ Mn(C) via the embedding
R ⊂ C, and denote by Ri the i-th row of M . Replacing Ri with Ri + iRi+1 (here i
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denotes a complex root of −1) for i ∈ {r1 + 1, r1 + 3, . . . , r1 + 2r2 − 1} shows that M has
the same determinant as the matrix M ′ ∈Mn(C) whose j-th column is

(9.1.c) (σ1(xj), . . . , σr1(xj), σr1+1(xj), I(σr1+1(xj)), . . . , σr1+r2(xj), I(σr1+r2(xj))).

Denote by R′i the i-th row of M ′. Replacing R′i with (−2i)R′i +R′i−1 for i ∈ {r1 + 2, r1 +
4, . . . , r1 + 2r2} shows that (−2i)r2 detM ′ = detM ′′, where M ′′ ∈ Mn(C) is the matrix
whose j-th column is

(σ1(xj), . . . , σr1(xj), σr1+1(xj), σr1+1(xj), . . . , σr1+r2(xj), σr1+r2(xj))),

where z 7→ z denotes the complex conjugation. Since σr1+j(xj) = σr1+r2+j(xj), it follows
that the matrix M ′′ is obtained from the matrix (σi(xj)) by permuting its rows. We
conclude that

(9.1.d) detM = ±(−2i)−r2 det(σi(xj)).

Therefore by Proposition 4.3.4

(detM)2 = ±2−2r2 DK/Q(x1, . . . , xn),

which is nonzero by (3.2.5). We have proved that M ∈Mn(R) is invertible. It follows that
the vectors σ(x1), . . . , σ(xn) ∈ Rn are R-linearly independent (as those are the columns
of M), so that σ(E) is a lattice in Rn. The formula for v(σ(E)) follows from Lemma 8.2.3
and (9.1.d). �

Proposition 9.1.2. Let K be a number field, and dK its absolute discriminant. Then

v(σ(OK)) =

√
|dK |
2r2

.

If I is a nonzero ideal of OK , then σ(I) is a lattice in Rn, and we have

v(σ(I)) =

√
|dK |
2r2

N(I).

Proof. The Z-module OK is free of rank n by Corollary 5.1.6. Thus the first state-
ment follows from (9.1.a) and Proposition 9.1.1.

By Theorem 1.3.2, we may find a Z-basis (x1, . . . , xn) of OK and integers c1, . . . , cs
with s ≤ n and such that (c1x1, . . . , csxs) is a Z-basis of I. The quotient OK/I is
isomorphic to (Z/c1Z)× . . . (Z/csZ)×Zn−s and is finite by Corollary 6.4.2. This implies
that n = s. Therefore by Proposition 9.1.1 the subgroup σ(I) ⊂ Rn is a lattice. Applying
Lemma 8.2.5 to the inclusion of lattices σ(I) ⊂ σ(OK) yields

v(σ(I)) = v(OK) · card(σ(OK)/σ(I)).

As the group morphism σ is injective, it induces an isomorphism OK/I ' σ(OK)/σ(I),
so that by the very definition of the absolute norm

card(σ(OK)/σ(I)) = card(OK/I) = N(I). �

The above proposition will typically be combined with Minkowski’s Theorem 8.2.6 to
produce integers in OK whose image under σ lies in certain subsets, as follows:

Corollary 9.1.3. Let K be a number field, and dK its absolute discriminant. Let
B be a subset of Rn, which is compact, convex, symmetric with respect to zero. If

µ(B) ≥ 2n−r2
√
|dK |,

then there exists a nonzero element x ∈ OK such that σ(x) ∈ B.
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Proof. This follows by combining Proposition 9.1.2 with Minkowski’s Theorem
(Corollary 8.2.7). �

2. Bounding the discriminant

Let r1, r2 ∈ N. For every t ∈ R with t > 0, we consider the subset Bt ⊂ Rr1 × Cr2
consisting of those elements (y1, . . . , yr1 , z1, . . . , zr2) satisfying

(9.2.a) (y1, . . . , yr1 , z1, . . . , zr2) ∈ Bt ⇐⇒
r1∑
i=1

|yi|+ 2

r2∑
i=1

|zi| ≤ t.

Lemma 9.2.1. For n = r1 + 2r2 > 0 and t > 0, the measure of the subset Bt defined
in (9.2.a) is

µ(Bt) = 2r1
(π

2

)r2 tn
n!
.

Proof. We argue by induction on r1 and r2. Let us set

V (r1, r2, t) = µ(Bt).

When r1 = 1, r2 = 0, the subset Bt ⊂ R is [−t, t], hence V (1, 0, t) = 2t. When r1 =

0, r2 = 1, the subset Bt ⊂ C is the disk {ρeiθ|0 ≤ ρ ≤ t/2}, hence V (0, 1, t) = πt2

4 . Thus
the formula is correct in both these cases.

r1 → r1+1: The subsetBt ⊂ Rr1+1×Cr2 consists of those elements (y, y1, . . . , yr1 , z1, . . . , zr2) ∈
R× Rr1 × Cr2 verifying

|y|+
r1∑
i=1

|yi|+ 2

r2∑
i=1

|zi| ≤ t.

Fubini’s theorem yields

V (r1 + 1, r2, t) =

∫ t

−t
V (r1, r2, t− |y|) dy

=

∫ t

−t
2r1
(π

2

)r2 (t− |y|)n

n!
dy

= 2

∫ t

0

2r1
(π

2

)r2 (t− y)n

n!
dy

= 2

∫ t

0

2r1
(π

2

)r2 xn
n!
dx (setting x = t− y)

= 2r1+1
(π

2

)r2 tn+1

(n+ 1)!
,

as required.
r2 → r2+1: The subsetBt ⊂ Rr1×Cr2+1 consists of those elements (y1, . . . , yr1 , z1, . . . , zr2 , z) ∈

Rr1 × Cr2 × C verifying
r1∑
i=1

|yi|+ 2

r2∑
i=1

|zi|+ 2|z| ≤ t.
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Denoting by dµ(z) is the Lebesgue measure on C, Fubini’s theorem now yields

V (r1, r2 + 1) =

∫
|z|≤t/2

V (r1, r2, t− 2|z|)dµ(z)

=

∫
|z|≤t/2

2r1
(π

2

)r2 (t− 2|z|)n

n!
dµ(z)

=

∫ t/2

ρ=0

∫ 2π

θ=0

2r1
(π

2

)r2 (t− 2ρ)n

n!
ρ dρ dθ (setting z = ρeiθ)

= 2r1
(π

2

)r2 2π

n!

∫ t/2

ρ=0

(t− 2ρ)nρ dρ

= 2r1
(π

2

)r2 2π

n!

∫ t

x=0

xn
t− x

2

dx

2
(setting x = t− 2ρ)

= 2r1
(π

2

)r2+1 1

n!

(∫ t

x=0

txn dx−
∫ t

x=0

xn+1 dx
)

= 2r1
(π

2

)r2+1 1

n!

( tn+2

n+ 1
− tn+2

n+ 2

)
= 2r1

(π
2

)r2+1 tn+2

(n+ 2)!
,

as required. �

Lemma 9.2.2 (Arithmetic mean versus geometric mean). Let n ∈ N r {0}, and
a1, . . . , an > 0 be real numbers. Then

a1 · · · an ≤
(a1 + · · ·+ an

n

)n
Proof. Let g = (a1 · · · an)−1/n ∈ R with g > 0. Replacing ai with gai for all

i ∈ {1, . . . , n}, we may assume that a1 · · · an = 1. Then it suffices to prove that

n ≤ a1 + · · ·+ an when a1 · · · an = 1.

This is done by induction on n. The case n = 1 is clear. Assume that n > 1. Upon
reordering the elements a1, . . . , an, we may assume that an−1 ≤ 1 and an ≥ 1. Then

0 ≤ (an − 1)(1− an−1) = an−1 + an − anan−1 − 1,

so that

(9.2.b) anan−1 ≤ an−1 + an − 1.

Then applying the induction hypothesis to a1, . . . , an−2, an−1an yields

n− 1 ≤ a1 + · · ·+ an−2 + an−1an.

Combining with (9.2.b) yields the result. �

Proposition 9.2.3. Let K be a number field, and n, r1, r2 as in §9.1. Let dK be the
absolute discriminant of K (Definition 5.1.9). Let I be a nonzero ideal of OK . Then I
contains a nonzero element x such that

|NK/Q(x)| ≤
( 4

π

)r2 n!

nn

√
|dK | ·N(I).
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Proof. For t ∈ R with t > 0, consider the subset Bt defined in (9.2.a), and the
canonical embedding σ : K → Rr1 × Cr2 (see §9.1). Setting

(9.2.c) t =
(2n−r1

πr2
n!
√
|dK | ·N(I)

)1/n
we have by Lemma 9.2.1

µ(Bt) = 2n−r2
√
|dK | ·N(I),

so that by Proposition 9.1.2

µ(Bt) = 2nv(σ(I)).

Then by Corollary 8.2.7 we may find a nonzero element x ∈ I such that σ(x) ∈ Bt
(the subset Bt is closed and bounded, hence compact). By Proposition 4.3.3 (in view of
Proposition 4.2.5), we have

NK/Q(x) =

r1∏
i=1

σi(x) ·
r1+r2∏
r1+1

σi(x) ·
r1+2r2∏

i=r1+r2+1

σi(x),

where z 7→ z is the complex conjugation, so that

|NK/Q(x)| =
r1∏
i=1

|σi(x)| ·
r1+r2∏
r1+1

|σi(x)|2.

Using the inequality of Lemma 9.2.2 we have

|NK/Q(x)| ≤
( 1

n

r1∑
i=1

|σi(x)|+ 2

n

r1+r2∑
r1+1

|σi(x)|
)n
≤ tn

nn
,

where the last inequality follows from the fact that σ(x) ∈ Bt. Combining this inequality
with (9.2.c), we obtain the statement. �

Corollary 9.2.4. Let K be a number field, and n, r2 as in §9.1. Let dK be the
absolute discriminant of K. Then every class in the ideal class group C(OK) (see Defini-
tion 6.3.11) contains a nonzero ideal I ⊂ OK such that

N(I) ≤
( 4

π

)r2 n!

nn

√
|dK |.

Proof. Let us fix a class α ∈ C(OK). Let J be a nonzero fractional ideal in the
class α. After multiplying J with an element of K× (which does not change the fact
that its class is α), we may assume that J−1 ⊂ OK , i.e. J−1 is an ideal. Applying
Proposition 9.2.3, we find a nonzero element x ∈ J−1 such that

(9.2.d) |NK/Q(x)| ≤
( 4

π

)r2 n!

nn

√
|dK |N(J−1).

Observe that xJ ⊂ J−1J = A, hence I = xJ is a nonzero ideal of OK . In addition I lies
in the same class as J , namely α. By multiplicativity of the absolute norms (Proposi-
tion 6.4.5) and Proposition 6.4.1, we have, as xOK = IJ−1

(9.2.e) N(I) N(J−1) = N(IJ−1) = N(xOK) = |NK/Q(x)|

Combining (9.2.d) with (9.2.e), and dividing by N(J−1) (which is nonzero, being by
definition the cardinality of a group) yields the result. �
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Corollary 9.2.5. Let K be a number field of degree n and absolute discriminant
dK . If n ≥ 2, then

|dK | ≥
π

3

(3π

4

)n−1
,

and n/ log |dK | is bounded by a constant independent of K.

Proof. Let us apply Corollary 9.2.4 to the trivial class (the class of the ideal OK).
This yields a nonzero ideal I of OK such that

N(I) ≤
( 4

π

)r2 n!

nn

√
|dK |.

As N(I) = card(OK/I) ≥ 1, we deduce that√
|dK | ≥

(π
4

)r2 nn
n!
.

Since 2r2 ≤ n and π ≤ 4 (see Lemma 9.2.6 below), we have |dK | ≥ an, where

an =
(π

4

)n n2n
(n!)2

.

We have a2 = π2/4, and using the binomial formula

an+1

an
=
π

4

(
1 +

1

n

)2n
=
π

4

(
1 + 2 +

2n∑
i=2

(
2n

i

)
1

ni

)
≥ 3π

4
.

Therefore

an ≥ a2
(3π

4

)n−2
=
π2

4

(3π

4

)n−2
=
π

3

(3π

4

)n−1
,

as required for the first statement. The second follows by taking logarithms. �

Lemma 9.2.6. We have 3 < π < 4.

Proof. For instance, observe that

1

2
=

∫ 1/2

0

dt <

∫ 1/2

0

dt√
1− t2

= arcsin
(1

2

)
− arcsin(0) =

π

6
,

and that

1 >

∫ 1

0

dt

1 + t2
= arctan(1)− arctan(0) =

π

4
. �

3. Discriminant and ideal class group

Proposition 9.3.1. Let K = Q(
√
d) be a quadratic field, where

d ∈ {2, 3, 5, 13,−1,−2,−3,−7}.

Then the ring OK is a principal ideal domain.

Proof. Let us assume that K = Q(
√
d), where d ∈ Z r {1} is an arbitrary square-

free integer. By Corollary 9.2.4 every class in C(OK) contains a nonzero ideal I such
that

N(I) ≤
( 4

π

)r2 n!

nn

√
|dK | =

( 4

π

)r2√|dK |
2

,
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where dK is the absolute discriminant of K, namely (see Example 5.1.10)

dK =

{
d if d = 1 mod 4

4d if d = 2, 3 mod 4.

Assume that K is real, i.e. d > 0. Then r2 = 0, and√
|dK |
2

< 2

when dK ≤ 15. For d = 1 mod 4, this holds when d ∈ {5, 13}. For d = 2, 3 mod 4, this
holds when dK = 4d ∈ {8, 12}, that is d ∈ {2, 3}.

Assume now that K is imaginary, i.e. d < 0. Then r2 = 1. If

−dK ≤ 9,

then, as π > 3 (see Lemma 9.2.6)

N(I) ≤
( 4

π

)r2√|dK |
2

<
2
√
−dK
3

≤ 2.

This is achieved for d ∈ {−3,−7} when d = 1 mod 4, and for d ∈ {−1,−2} when d = 2, 3
mod 4.

Therefore for the values of d indicated in the statement of the proposition, we have
proved that every nonzero fractional ideal of OK has the same class in C(OK) as a nonzero
ideal I of OK satisfying

N(I) < 2.

We must thus have N(I) = 1, which means that OK/I = 0, and thus I = OK . There-
fore the group C(OK) possesses a single element (the class of OK), which implies by
Proposition 6.3.12 that OK is a principal ideal domain. �

Remark 9.3.2. The list figuring in Proposition 9.3.1 is far from exhaustive.

Theorem 9.3.3 (Hermite–Minkowski). Let K be a number field with absolute dis-
criminant dK . If K 6= Q, then dK 6∈ {1,−1}.

Proof. This follows from Corollary 9.2.5, as π/3 > 1 and 3π/4 > 1 by Lemma 9.2.6.
�

Lemma 9.3.4. Let K be a number field. Then for each nonzero integer q ∈ Z, there
are only finitely many nonzero ideals I of OK such that N(I) = q.

Proof. If I is a nonzero ideal of OK such that N(I) = q, then by Lemma 6.4.4
the ideal I is among the ideals containing qOK , and there are only finitely many such
ideals because OK/qOK is finite (recall that card(OK/qOK) = |NK/Q(q)| <∞ by Propo-
sition 6.4.1). �

Theorem 9.3.5 (Dirichlet). For every number field K, the ideal class group C(OK)
is finite.

Proof. By Corollary 9.2.4 the set C(OK) is the set of classes of nonzero ideals I of
OK satisfying N(I) ≤ α, where

α =
( 4

π

)r2 n!

nn

√
|dK | ∈ R.
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It follows from Lemma 9.3.4, applied to each of the finitely many integers q such that
1 ≤ q ≤ α, that there are only finitely such nonzero ideals I, and thus only finitely many
classes in OK . �

We will use the fact the “the coefficients of a polynomial are polynomial in its roots”,
so let us formalise this statement. Let n ∈ N. We will introduce polynomials

F0,n, . . . , Fn,n ∈ Z[Y1, . . . , Yn],

which are, up to sign, the so-called elementary symmetric functions. Let us set R =
Z[Y1, . . . , Yn], and consider the polynomial

(X − Y1) · · · (X − Yn) ∈ R[X].

We then define F0,n, . . . , Fn,n ∈ R as its coefficients, so that

(9.3.a) (X − Y1) · · · (X − Yn) = Fn,nX
n + · · ·+ F0,n ∈ Z[X,Y1, . . . , Yn].

Theorem 9.3.6 (Hermite). The field C contains only finitely many number fields of
given absolute discriminant.

Proof. We know by Corollary 9.2.5 that the degree of a number field of given abso-
lute discriminant is bounded. Hence it will suffice to prove that C contains only finitely
many of number fields of given degree n and discriminant d. Since for a given n, there
are only finitely many pairs (r1, r2) ∈ N2 such that n = r1 + 2r2, we may fix the integers
r1, r2, d and show that C contains only finitely many number fields admitting exactly r1
real embeddings and 2r2 complex nonreal embeddings, and having discriminant d.

So we consider a number field K of degree n and discriminant dK = d, and use the
notation above (at this point we do not choose a particular embedding K ⊂ C). We
consider the subset B ⊂ Rr1×Cr2 of elements (y1, . . . , yr1 , z1, . . . , zr2) such that (as usual
u ∈ C denotes the complex conjugate of u ∈ C)

if r1 > 0:


|y1| ≤ 2n−1

(
π
2

)−r2√|dK |,
|yi| ≤ 1

2 for i = 2, . . . , r1,

|zi| ≤ 1
2 for i = 1, . . . , r2.

if r1 = 0:


|z1 − z1| ≤ 2n

(
π
2

)1−r2√|dK |,
|z1 + z1| ≤ 1,

|zi| ≤ 1
2 for i = 2, . . . , r2.

The subset B is compact, convex, symmetric with respect to 0. If r1 > 0, we have

µ(B) =
(

2n
(π

2

)−r2√
|dK |

)
· (1)r1−1 ·

(π
4

)r2
= 2n−r2

√
|dK |.

(Note that B is the product of r1 intervals and r2 disks.) If r1 = 0, writing z1 = x + iy
with x, y ∈ R we have |z1 − z1| = 2|y| and |z1 + z1| = 2|x|, so that

µ(B) =
(

2n
(π

2

)2−r2√
|dK |

)
· (1) ·

(π
4

)r2−2
= 2n−r2

√
|dK |.

In any case, by Corollary 9.1.3 we find a nonzero element x ∈ OK such that σ(x) ∈ B.
Next, we claim that

(9.3.b) σi(x) 6= σ1(x) for all i = 2, . . . , n.

Indeed, recall that NK/Q(x) ∈ Q r {0} by Lemma 3.1.10, and that NK/Q(x) ∈ Z by
Corollary 5.1.2, so that |NK/Q(x)| ≥ 1 (alternatively this follows from Proposition 6.4.1).
Thus, by Proposition 4.3.3 (and Proposition 4.2.5) we have

(9.3.c)

n∏
i=1

|σi(x)| = |NK/Q(x)| ≥ 1.
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If r1 > 0, we have |σi(x)| ≤ 1
2 for i = 2, . . . , n (because σ(x) ∈ B), so that |σ1(x)| ≥ 1

by (9.3.c), from which (9.3.b) follows.

If r1 = 0, note that |σj+r2(x)| = |σj(x)| = |σj(x)| for j = 1, . . . , r2. Thus we
have |σi(x)| ≤ 1

2 for i ∈ {1, . . . , n} r {1, r2 + 1} (because σ(x) ∈ B), so that |σ1(x)| =
|σr2+1(x)| ≥ 1. In particular σ1(x) 6= σi(x) when i 6∈ {1, r2 + 1}. Moreover the condition

|σ1(x) + σ1(x)| ≤ 1 (as σ(x) ∈ B) together with the fact that |σ1(x)| ≥ 1 implies that

σ1(x) 6∈ R, so that σ1(x) 6= σ1(x) = σr2+1(x). We have established (9.3.b) also in this
case.

Let us now prove that Q(x) = K. Assume that [K : Q(x)] > 1. As the field exten-
sion K/Q(x) is separable (see Proposition 4.1.16), by Lemma 4.2.4 (in view of Proposi-
tion 4.2.5) each morphism of Q-algebra Q(x)→ C admits at least two distinct extensions
to a morphism of Q-algebras K → C. In particular σ1|Q(x) : Q(x) → C extends to a
morphism of Q-algebras α : K → C which is not σ1. Since {σ1, . . . , σn} is the set of
morphisms of Q-algebras K → C, we find an index i ∈ {2, . . . , n} such that α = σi. As
α|Q(x) = σ1, we have σi(x) = α(x) = σ1(x), a contradiction with (9.3.b), proving that
K = Q(x).

We now consider the polynomials Fj,n ∈ Z[Y1, . . . , Yn] defined in (9.3.a). By the
definition of B, for i ∈ {1, . . . , n} the elements σi(x) ∈ C are bounded (by this we mean
that the real numbers |σi(x)| are bounded), hence so are the elements

(9.3.d) Fj,n(σ1(x), . . . , σn(x)) ∈ C, for j = 0, . . . , n.

We emphasize that we obtain a uniform bound, which depends only on the integers
r1, r2, and not on the particular number field K having the given invariants r1, r2. But the
elements (9.3.d) coincide with the coefficients of the characteristic polynomial χK/Q(x) by
Proposition 4.3.3, and therefore by Proposition 5.1.1 belong to Z. Thus the characteristic
polynomial χK/Q(x) ∈ Q[X] can take only finitely many values.

Now if K ⊂ C, then x ∈ C is among the roots of the polynomial χK/Q(x) ∈ C[X],
by the Cayley–Hamilton theorem (Proposition 3.1.6). Therefore there are only finitely
many possibilities for the element x ∈ C, hence also for K = Q(x) ⊂ C. �

Remark 9.3.7. Since every number field admits an embedding into C, it follows from
Theorem 9.3.6 that there are only finitely many isomorphism classes of number fields of
given absolute discriminant.

4. Dirichlet’s unit Theorem

We recall that an element x ∈ K is called a root of unity if there exists an integer
q ∈ Nr {0} such that xq = 1.

Theorem 9.4.1 (Dirichlet). Let K be a number field. Consider the integers r1, r2
defined in §1, and set r = r1 + r2 − 1. Let G ⊂ K× be the subgroup of roots of unity in
K. Then the group G is finite and cyclic, and there exists a group isomorphism

(OK)× ' Zr ×G.

Remark 9.4.2. Theorem 9.4.1 shows that there exist units u1, . . . , ur ∈ (OK)× such
that each unit of (OK)× can be written in a unique way as

ξun1
1 · · ·unr

r , where n1, . . . , nr ∈ Z, and ξ ∈ K is a root of unity.

Such a system (u1, . . . , ur) is called a fundamental system of units of K.
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The proof of Theorem 9.4.1 is somewhat long, so we first establish a few facts. We
use the injective ring morphisms

σ1, . . . , σr1 : K → R and σr1+1, . . . , σr1+r2 : K → C

described at the beginning of §1 to define the map, called the logarithmic embedding :

L : K× → Rr1+r2 , x 7→ (log |σ1(x)|, . . . , log |σr1+r2(x)|).

Observe that L is a group morphism.

Lemma 9.4.3. For any bounded subset B of Rr1+r2 , the set (OK)× ∩ L−1B is finite.

Proof. Let C = (OK)× ∩ L−1B. As B is bounded, so is log |σi(C)|, and thus also
|σi(C)|, for each i ∈ {1, . . . , r1 + r2}. Therefore the elements σi(x) ∈ C, for x ∈ C, are
bounded. Let us consider the polynomials Fj,n ∈ Z[Y1, . . . , Yn] defined in (9.3.a), so that
by Proposition 4.3.3, the coefficients of the characteristic polynomial χK/Q(x) are the
elements

(9.4.a) Fj,n(σ1(x), . . . , σn(x)) ∈ C, for j = 0, . . . , n.

As x runs over C, the elements (9.4.a) are bounded, and belong to Z by Proposition 5.1.1.
Therefore the set of polynomials χK/Q(x) ∈ Z[X], where x runs over C, is finite. Since
x ∈ K is among the finitely many roots of χK/Q(x) in K (by the Cayley–Hamilton
theorem, see Proposition 3.1.6), we deduce that the set C is finite. �

Lemma 9.4.4. The group G of roots of unity in K× coincides with (OK)× ∩ kerL,
and is finite and cyclic.

Proof. Taking B = {0} in Lemma 9.4.3, we deduce that the group H = (OK)× ∩
kerL is finite. Being a subgroup of (OK)×, we see using Proposition 1.3.5 that H is a
finite cyclic group. Each element of H has finite order (because H is finite), hence is a
root of unity, so that H ⊂ G. Conversely let x ∈ K be a root of unity, and q ∈ Nr{0} be
such that xq = 1. Then x is a root of the monic polynomial Xq − 1, and is thus integral
over Z, so that x ∈ (OK)×. Moreover, for any i ∈ {1, . . . , r1 + r2}, we have σi(x)q = 1,
hence |σi(x)|q = 1, which implies q log |σi(x)| = 0, and thus log |σi(x)| = 0. We conclude
that L(x) = 0. It follows that G ⊂ H, so that G = H. �

We now consider the R-subspace

(9.4.b) W =
{

(y1, . . . , yr1+r2)|
r1∑
i=1

yi + 2

r1+r2∑
i=r1+1

yi = 0
}
⊂ Rr1+r2 ,

and set

r = dimRW = r1 + r2 − 1.

Lemma 9.4.5. We have L((OK)×) ⊂W .

Proof. For x ∈ (OK)×, we have by Proposition 4.3.3 (and Proposition 4.2.5)

NK/Q(x) =

n∏
i=1

σi(x) =

r1∏
i=1

σi(x)

r1+r2∏
i=r1+1

σi(x)σi(x),
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where y 7→ y denotes the complex conjugation. By Corollary 5.1.3, we have NK/Q(x) ∈
Z× = {1,−1}. Taking absolute values and then logarithms, we obtain

0 =

r1∑
i=1

log |σi(x)|+
r1+r2∑
i=r1+1

(
log |σi(x)|+ log |σi(x)|

)
=

r1∑
i=1

log |σi(x)|+ 2

r1+r2∑
i=r1+1

log |σi(x)|,

which shows that L(x) ∈W . �

Lemma 9.4.6. Let s be the dimension of the R-subspace generated by L((OK)×) in
Rr1+r2 . Then s ≤ r, and there exists a group isomorphism

(OK)× ' Zs ×G.

Proof. By Lemma 9.4.3, for every compact subset B of Rr1+r2 the intersection
L((OK)×) ∩ B is finite, being the image of (OK)× ∩ L−1B. Therefore by Lemma 8.1.2
the subgroup L((OK)×) ⊂ Rr1+r2 is discrete, hence by Theorem 8.1.4 it is generated
by a system (e1, . . . , es) of R-linearly independent vectors in Rr1+r2 (note that s is then
the dimension of the R-subspace generated by L((OK)×)). We have e1, . . . , es ∈ W by
Lemma 9.4.5, and as dimRW = r, we have s ≤ r. Thus the Z-module L((OK)×) is free
of rank s ≤ r, a Z-basis being given by (e1, . . . , es). Pick elements f1, . . . , fs ∈ (OK)×

such that L(fi) = ei for i = 1, . . . , s. For x ∈ (OK)×, denote by (x1, . . . , xs) ∈ Zs the
coordinates of L(x) in the basis (e1, . . . , es). Then the element

y = x

s∏
i=1

f−xi
i ∈ (OK)×

maps to 0 ∈ Rr1+r2 under L, hence belongs to G = kerL. It is clear that the maps
x 7→ xi and x 7→ y define group morphisms (OK)× → Z and (OK)× → G. We thus obtain
a group morphism

(OK)× → Zs ×G, x 7→ (x1, . . . , xs, y).

Conversely, we define a group morphism

Zs ×G→ (OK)×, (a1, . . . , as, g) 7→ g

s∏
i=1

faii ,

and it is easy to verify that these two morphisms are mutually inverse. �

To conclude the proof of Theorem 9.4.1, in view of Lemma 9.4.6, it will suffice to show
that L((OK)×) ⊂ W contains an R-basis of W . Thus, we let f : W → R be a nonzero
R-linear form, and find a unit u ∈ (OK)× such that f(L(u)) 6= 0. Consider the projection

π : Rr+1 → Rr, (y1, . . . , yr+1) 7→ (y1, . . . , yr).

Then the formula (9.4.b) defining the hyperplane W shows that π induces an isomorphism

W
∼−→ Rr: the inverse is given by

(y1, . . . , yr) 7→
(
y1, . . . , yr,−

1

2

( r1∑
i=1

yi + 2

r∑
i=r1+1

yi

))
In particular, there exist c1, . . . , cr ∈ R such that for all y = (y1, . . . , yr+1) ∈ W ⊂ Rr+1,
we have

(9.4.c) f(y) = c1y1 + · · ·+ cryr.
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Let us now set

α =
( 2

π

)r2√
|dK | ∈ R, and β = 1 +

( r∑
i=1

|ci|
)

logα ∈ R.

Lemma 9.4.7. For each family λ = (λ1, . . . , λr) ∈ Rr such that λi > 0 for all i ∈
{1, . . . , r}, there exists a nonzero element xλ ∈ OK such that

(9.4.d) |NK/Q(xλ)| ≤ α

and

(9.4.e)
∣∣∣f(L(xλ))−

r∑
i=1

ci log λi

∣∣∣ < β

Proof. Assume given a system λ = (λ1, . . . , λr) ∈ Rr. We define a real number
λr+1 > 0 by the requirement that

r1∏
i=1

λi

r+1∏
i=r1+1

λ2i = α.

The subset B ⊂ Rr1 × Cr2 consisting of those (y1, . . . , yr1 , z1, . . . , zr2) such that

|yi| ≤ λi for i = 1, . . . , r1 and |zj | ≤ λr1+j for j = 1, . . . , r2

is compact, convex, and symmetric with respect to the origin. It is a product of r1
intervals and r2 disks, whose measure is

µ(B) =

r1∏
i=1

2λi

r2∏
i=1

πλ2r1+i = 2r1πr2α = 2n−r2
√
|dK |

It then follows form Corollary 9.1.3 that there exists a nonzero element xλ ∈ OK such
that σ(xλ) ∈ B. This means that

|σi(xλ)| ≤ λi for i = 1, . . . , n,

where we write λj+r2 = λj for j = r1 + 1, . . . , r1 + r2. As xλ is a nonzero element of OK ,
we have NK/Q(xλ) ∈ Zr{0} by Lemma 3.1.10 and Corollary 5.1.2. Thus, by the formula
for the norm (see Proposition 4.3.3 and Proposition 4.2.5)

1 ≤ |NK/Q(xλ)| =
n∏
i=1

|σi(xλ)| ≤
n∏
i=1

λi =

r1∏
i=1

λi

r+1∏
i=r1+1

λ2i = α,

so that, for each i ∈ {1, . . . , n}

|σi(xλ)| = |NK/Q(xλ)| ·
∏
j 6=i

|σj(xλ)|−1 ≥
∏
j 6=i

λ−1j = λiα
−1.

We have proved that λiα
−1 ≤ |σi(xλ)| ≤ λi for all i ∈ {1, . . . , n}, and thus

(9.4.f) 0 ≤ log λi − log |σi(xλ)| ≤ logα.



87 9. Ideal class group and units in number fields

Coming back to the expression (9.4.c), we have∣∣∣f(L(xλ))−
r∑
i=1

ci log λi

∣∣∣ =
∣∣∣ r∑
i=1

ci(log |σi(xλ)| − log λi)
∣∣∣

≤
r∑
i=1

|ci| ·
∣∣∣ log |σi(xλ)| − log λi

∣∣∣
≤
( r∑
i=1

|ci|
)

logα by (9.4.f)

< β. �

For each h ∈ Nr {0}, let us pick real numbers λ1,h, . . . , λr,h > 0 satisfying
r∑
i=1

ci log λi,h = 2βh.

(This is possible because the linear form f : W → R is nonzero, and thus surjective.) Let
us set, for all h ∈ Nr {0}

λ(h) = (λ1,h, . . . , λr,h) ∈ Rr.

Lemma 9.4.8. The real numbers f(L(xλ(h))) are pairwise distinct for h ∈ Nr {0}.

Proof. The equation (9.4.e) yields

|f(L(xλ(h)))− 2βh| < β

and therefore
(2h− 1)β < f(L(xλ(h))) < (2h+ 1)β,

from which the lemma follows. �

Now, for every h ∈ Nr {0}, we have by Proposition 6.4.1 and (9.4.d)

N(xλ(h)OK) = |NK/Q(xλ(h))| ≤ α
so that by Lemma 9.3.4 the set of ideals in OK

{xλ(h)OK |h ∈ Nr {0}}
is finite. We may thus find h, k ∈ Nr {0} such that h 6= k and xλ(h)OK = xλ(k)OK . This

means that there exists a unit u ∈ (OK)× such that xλ(k) = uxλ(h). We then have

f(L(u)) = f(L(xλ(k)))− f(L(xλ(h))) ∈ R,
which is nonzero by Lemma 9.4.8. We have thus found an element L(u) ∈ L((OK)×),
satisfying f(L(u)) 6= 0, which completes the proof of Theorem 9.4.1 (cf. the discussion
just below the proof of Lemma 9.4.6).
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CHAPTER 10

Decomposition of prime ideals in extensions

1. Prime ideals under extensions

We fix a Dedekind domain A with fraction field K. We let L/K be a finite separable
extension of degree n = [L : K], and let B be the integral closure of A in L. We recall
that B is a Dedekind domain (Theorem 6.1.6).

Let p be a nonzero prime ideal of A. Then Bp is an ideal of the Dedekind domain B,
hence by Theorem 6.3.5 we may write

(10.1.a) Bp =

r∏
i=1

qeii

where q1, . . . , qr are maximal ideals of B, and e1, . . . , er ∈ Nr {0}.

Definition 10.1.1. We say that a prime ideal q of B lies over p if q ∩A = p.

Lemma 10.1.2. The prime ideals of OK lying over p are q1, . . . , qr. Those are precisely
the prime ideals of B containing p.

Proof. Let us first observe that p = q ∩ A ⇐⇒ p ⊂ q. The relation ⇒ is clear;
conversely if p ⊂ q, then p ⊂ q ∩ A. As q ∩ A is a prime ideal (Lemma 1.1.2) which is
nonzero (Lemma 2.1.19), and A a Dedekind domain, it follows that p = q∩A. Therefore
the prime ideals q of B such that p = q∩A are precisely those containing pB. In view of
the decomposition (10.1.a), those are precisely q1, . . . , qr by Proposition 6.3.9 (ii). �

Definition 10.1.3. In the above situation, the integer ei is called the ramification
index of qi over A. The integer

fi = [B/qi : A/p]

is called the residual degree of qi over A. When q is a prime ideal of B lying over p, there
is by Lemma 10.1.2 a unique i such that q = qi. We will then write eq, fq instead of ei, fi.

The following observation will permit to “localise” at the prime ideal p:

Lemma 10.1.4. In the above situation, let S = Arp. Then the natural ring morphisms

A/p→ (S−1A)/(S−1p) and B/pB → (S−1B)/(pS−1B)

are isomorphisms.

Proof. The first isomorphism follows directly from Lemma 7.1.8, because A/p is a
field (recall that p is a maximal ideal of A). So will the second one, if we prove that
π(S) ⊂ (B/pB)×, where π : B → B/pB is the quotient map.
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So let s ∈ S. If π(s) 6∈ (B/pB)×, then π(s) is contained in some maximal ideal m of
B/pB (Lemma 1.2.7). Let q = π−1m. Since π is surjective, it induces a ring isomorphism
B/q ' A/m, hence B/q is a field, so that q is a maximal ideal of B. In addition q = π−1m
contains p = π−1{0}, hence q lies over p. The element s belongs to q (since s ∈ m), hence
s ∈ q ∩A = p by Lemma 10.1.2, contradicting that fact that s ∈ S = Ar p. �

Proposition 10.1.5. In the situation above, we have an isomorphism of B-algebras

B/Bp '
r∏
i=1

B/qeii .

Proof. Let i ∈ {1, . . . , r}. Let q be a prime ideal of B containing qeii . If x ∈ qi,
then xei ∈ q, hence x ∈ q because the ideal q of B is prime. Thus qi ⊂ q, hence qi = q by
maximality of qi. Thus qi is the only prime ideal of B containing qeii . Since for i 6= j we
have qi 6= qj , it follows that qeii + q

ej
j = B. Therefore, in view of (10.1.a), the statement

follows from the Chinese remainder theorem (Lemma 1.1.5). �

We will need the following easy lemma:

Lemma 10.1.6. Let R be a ring and I an ideal of R. If M is a free R-module of rank
n ∈ N, then M/IM is a free (R/I)-module of rank n.

Proof. Let (e1, . . . , en) be an R-basis of M , and denote by (f1, . . . , fn) its image
in M/IM . Then the elements f1, . . . , fn certainly generate the (R/I)-module M/IM .
Assume that λ1, . . . , λn ∈ R/I are such that

n∑
i=1

λifi = 0 ∈M/IM.

Pick preimages r1, . . . , rn ∈ R of λ1, . . . , λn ∈ R/I. Then
n∑
i=1

riei ∈ IM.

Now the group IM is generated by the sets Ie1, . . . , Ien, hence we may find y1, . . . , yn ∈ I
such that

n∑
i=1

riei =

n∑
i=1

yiei ∈M.

Since (e1, . . . , en) is an R-basis of M , it follows that ri = yi for i ∈ {1, . . . , n}, and in
particular r1, . . . , rn ∈ I, and finally λ1 = · · · = λn = 0. We have proved that the system
(f1, . . . , fn) ∈ (M/IM)n is (R/I)-linearly independent. �

Lemma 10.1.7. Let q be a nonzero prime ideal of B, and s ∈ N r {0} such that
pB ⊂ qs. Then

dimA/p(B/qs) = s · dimA/p(B/q).

Proof. Let us write k = A/p. We proceed by induction on s, the case s = 1 being
clear. Assume that s > 1. Consider the k-vector space V = B/qs and its subspace
U = qs−1/qs. Then dimk V = dimk U + dimk(V/U). Observe that V/U ' B/qs−1 as
k-vector space, so that dimk(V/U) = (s − 1) · dimk(B/q) by the induction hypothesis.
Thus

(10.1.b) dimk(B/qs) = dimk(qs−1/qs) + (s− 1) · dimk(B/q).
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But dimB/q(qs−1/qs) = 1 by Proposition 6.3.10 (applied in the Dedekind domain B),

hence dimk(qs−1/qs) = dimk(B/q). Therefore the formula (10.1.b) becomes dimk(B/qs) =
s · dimk(B/q), as required. �

Theorem 10.1.8. In the above situation, we have

n = dimA/p(B/pB) =

r∑
i=1

eifi.

Proof. Proposition 10.1.5 implies that

dimA/p(B/pB) =

r∑
i=1

dimA/p(B/qeii ).

Now by Lemma 10.1.7, we have for any i ∈ {1, . . . , r}

dimA/p(B/qeii ) = ei · dimA/p(B/q) = eifi.

This proves the second equality.
To prove the first equality, let us localise at the multiplicative set S = Ar p. We set

A′ = S−1A = Ap and p′ = S−1p, as well as B′ = S−1B. Recall from Proposition 7.1.12
that A′ is a Dedekind domain with fraction field K, and from Proposition 7.1.9 that B′

is the integral closure of A′ in L. The ring A′ is local (Lemma 7.1.14), and a Dedekind
domain, hence by Proposition 7.2.8 it is a principal ideal domain. Therefore by Corol-
lary 5.1.6 the A′-module B′ is free of rank n. As observed in Lemma 10.1.6, this implies
that the (A′/p′)-module B′/p′B′ is free of rank n. Thus

(10.1.c) n = dimA′/p′(B
′/p′B′) =

r∑
i=1

eifi.

Finally it follows from Lemma 10.1.4 that

dimA/p(B/pB) = dimA′/p′(B
′/pB′). �

Remark 10.1.9. It follows from Theorem 10.1.8 that r ≥ 1, so that Bp is contained
in some prime ideal of B. This fact is in fact a consequence of the integrality of the
extension A ⊂ B alone (by the so-called “going-up” theorem).

2. Discriminant and ramification

In this section A is a Dedekind domain with fraction field K. We consider a finite
separable field extension L/K of degree n = [L : K], and let B be the integral closure of
A in L.

Definition 10.2.1. We say that a nonzero prime ideal p of A does not ramify in B
if the (A/p)-algebra B/pB is étale. Otherwise, we say that p ramifies in B. When A = Z
and so L is a number field, we say that a prime number p ramifies (resp. does not ramify)
in L if the ideal pZ ramifies (resp. does not ramifies) in B = OL.

Proposition 10.2.2. A nonzero prime ideal p of A does not ramify in B if and only
if, for every prime ideal q of B lying over p, the following two conditions are satisfied:

(1) the field extension A/p ⊂ B/q is separable,
(2) eq = 1.
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Proof. Recall from §10.1 that we have an isomorphism of B-algebras

B/pB ' (B/qe11 )× · · · × (B/qerr ),

where q1, . . . , qr are the prime ideals q of B lying over p. By Lemma 4.4.1, the prime p
does not ramify in B if and only if each (A/p)-algebra B/qeii is étale, for i ∈ {1, . . . , r}.

So let us fix i ∈ {1, . . . , r}. If ei ≥ 2, we may find by Corollary 6.3.3 and element
y ∈ qir(qeii ). Then the image of y inB/qeii is nilpotent and nonzero, so that the ringB/qeii
is not reduced. Since an étale algebra is reduced (Theorem 4.4.6), we must have ei = 1
when p does not ramify in B. In addition A/p ⊂ B/qi is a field extension of finite degree
fi, which is separable if and only the (A/p)-algebra B/qi is étale (Corollary 4.4.7). �

Corollary 10.2.3. Let F/K be a finite separable field extension containing L/K as
a subextension, and C the integral closure of A in F . Let p be a nonzero prime ideal of
A which does not ramify in C. Then p does not ramify in B.

Proof. It follows from Proposition 2.1.15 that C is the integral closure of B in L.
Assume that q is a prime ideal of B satisfying q∩A = p. By Remark 10.1.9, there exists
a prime ideal a of C such that a ∩B = q. By assumption the field extension A/p ⊂ C/a
is separable, hence so is its subextension A/p ⊂ B/q. Moreover if e is the ramification
index of q over A, we have

Cp = C(Bp) ⊂ C(qe) = (qC)e ⊂ ae,

which implies that e = 1, as p does not ramify in C. �

Remark 10.2.4. Assume that L is a number field. Set K = Q and A = Z, so that
B = OL. Then any prime ideal p of A is of the form pZ for a prime number p, and thus
A/p is the finite field with p elements. Therefore A/p is perfect by Proposition 4.1.17, and
thus the field extension A/p ⊂ B/q is automatically separable. In conclusion, a prime
number p ramifies in OL if and only if for some prime ideal q of OL lying over pZ the
ramification index eq is unequal to 1.

Definition 10.2.5. The discriminant ideal is the ideal DB/A of A generated by the
discriminants DL/K(x1, . . . , xn) of the systems (x1, . . . , xn) ∈ Bn (recall that those belong
to A ⊂ K by Proposition 5.1.1).

Remark 10.2.6. It follows from Lemma 5.1.8 (iii) that this definition is compatible
with the existing definition of the discriminant ideal DB/A given in Definition 3.2.3 when
the A-module B is free of rank n.

Lemma 10.2.7. The discriminant ideal DB/A is nonzero.

Proof. Recall from Theorem 5.1.5 that B contains a K-basis (e1, . . . , en) of L.
Moreover, as the field extension L/K is separable we have DL/K 6= 0 by Theorem 4.4.6
(and Proposition 4.2.5). Then by Proposition 3.2.5 we have DL/K(e1, . . . , en) 6= 0, so
that DB/A 6= 0. �

Lemma 10.2.8. Let S ⊂ A be a multiplicatively closed subset which does not contain
zero. Then S−1 DB/A = D(S−1B)/(S−1A).

Proof. First observe that for any system (u1, . . . , un) ∈ Ln and λ ∈ K, we have

det(TrL/K(λui · λuj)) = λ2n det(TrL/K(uiuj)),
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so that

(10.2.a) DL/K(λu1, . . . , λun) = λ2n DL/K(u1, . . . , un)

Consider now a system (y1, . . . , yn) ∈ (S−1B)n. Then we may find an element s ∈ S
such that syi ∈ B for all i ∈ {1, . . . , n}. By (10.2.a) we have s2n DL/K(y1, . . . , yn) =
DL/K(sy1, . . . , syn), which belongs to A by Proposition 5.1.1, hence DL/K(y1, . . . , yn)

belongs to S−1A. This proves that D(S−1B)/(S−1A) ⊂ S−1 DB/A.
Conversely, let (x1, . . . , xn) ∈ Bn be a system, and s ∈ S. Then, by (10.2.a) we have

DL/K(x1, . . . , xn)

s
= s2n−1 DL/K

(x1
s
, . . . ,

xn
s

)
,

and this element belongs to D(S−1B)/(S−1A). Thus S−1 DB/A ⊂ D(S−1B)/(S−1A). �

Lemma 10.2.9. Assume that the A-module B is free of rank n. Let I be an ideal of
A. Then the ideal D(B/IB)/(A/I) is the image of DB/A under the quotient map A→ A/I.

Proof. Recall from Lemma 10.1.6 that the (A/I)-module B/IB is free of rank n.
Consider a system (b1, . . . , bn) ∈ Bn, and its image (c1, . . . , cn) ∈ (B/IB)n. Then the
coefficients of the matrix (Tr(B/IB)/(A/I)(cicj)) ∈Mn(A/I) are the images of those of the
matrix (TrB/A(bibj)) ∈Mn(A). Taking determinants shows that D(B/IB)/(A/I)(c1, . . . , cn) ∈
A/I is the image of D(B/IB)/(A/I)(b1, . . . , bn) ∈ A. Thus the ideal DB/A contains the
image of D(B/IB)/(A/I). The other inclusion follows from the fact that any system in
(B/IB)n is the image of some system in Bn. �

Theorem 10.2.10. Let p be a nonzero prime ideal of A. Then p ramifies in B if and
only if DB/A ⊂ p.

Proof. The subset S = Arp of A (and thus also of B) is multiplicatively closed and
does not contain zero. Set A′ = S−1A, B′ = S−1B, p′ = S−1p. Recall from Lemma 10.1.4
that we have natural isomorphisms

A/p ' A′/p′ and B/pB ' B′/p′B′.
In addition A′ = Ap is principal ideal domain (Proposition 7.2.8), so that the A′-module
B′ is free of rank n (Corollary 5.1.6). Now by the characterisation of étale algebras given
in Theorem 4.4.6, it follows that the prime ideal p ramifies in B if and only if

D(B/pB)/(A/p) = D(B′/p′B′)/(A′/p′) = 0,

which by Lemma 10.2.9 is equivalent to DB′/A′ ⊂ p′, which is in turn equivalent to

S−1 DB/A ⊂ S−1p by Lemma 10.2.8. But this last condition is equivalent to DB/A ⊂ p
by Lemma 7.1.5. �

Remark 10.2.11. When A = Z and so L is a number field, recall from Proposi-
tion 3.2.5 that the ideal DOL/Z is generated by the absolute discriminant dL (see Defini-
tion 5.1.9). Thus it follows from Theorem 10.2.10 that the prime numbers ramifying in L
are precisely the prime divisors of the absolute discriminant dL. In particular, Hermite–
Minkowski’s Theorem 9.3.3 implies that there is always at least one prime number which
ramifies in L, when L 6= Q.

Corollary 10.2.12. The set of nonzero prime ideals of A ramifying in B is finite.

Proof. Since DB/A 6= 0 by Lemma 10.2.7, the corollary follows from Theorem 10.2.10
and Remark 6.1.3. �
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3. Cyclotomic fields

Let p be an odd prime number, and ξ ∈ C is a primitive p-th root of unity. Consider
the cyclotomic field K = Q(ξ) ⊂ C, which is a number field of degree p− 1 (see §5.3).

Proposition 10.3.1. The only prime number which ramifies in K is p.

Proof. Recall that p is assumed to be odd. The absolute discriminant of K is
(−1)p−1pp−2 by Lemma 5.3.8, hence the statement follows from Theorem 10.2.10. �

Proposition 10.3.2. The ideal (1− ξ)OK is prime in OK , and

pOK =
(
(1− ξ)OK

)p−1
.

Proof. Recall from Lemma 5.3.4 that pOK = (1 − ξ) · · · (1 − ξp−1)OK . For any
i ∈ {1, . . . , p− 1}, we have (1− ξi) = (1− ξ)(1 + ξ + · · ·+ ξi−1) ∈ (1− ξ)OK . It follows
that pOK ⊂ ((1− ξ)OK)p−1, so that

(10.3.a) pOK = I ·
(
(1− ξ)OK

)p−1
,

where I is a nonzero ideal of the Dedekind domain OK . Recall from Lemma 6.3.4 that
the nonzero ideal (1− ξ)OK may be written as a product a1 · · · am where a1, . . . , am are
prime ideals of OK (possibly not pairwise distinct). Since (1− ξ)OK 6= OK (for instance
by Lemma 5.3.5), we have m ≥ 1. On the other hand, the ideal pOK is the product of at
most n = p − 1 prime ideals by Theorem 10.1.8. Writing I as a product of prime ideals
of OK (Lemma 6.3.4), we deduce from (10.3.a) and Theorem 6.3.5 that m = 1 and I = 1.
We conclude that (1− ξ)OK is a prime ideal of OK , and obtain the stated decomposition
of the ideal pOK . �

Remark 10.3.3. With the notation of §10.1 for A = Z, B = OK , and the prime ideal
p = pZ of Z, Proposition 10.3.2 asserts that r = 1 and q1 = (1− ξ)OK , as well as f = 1
and e = n = p− 1.

4. Quadratic fields

Let K = Q and L be a quadratic field. We consider a prime number p ∈ N, and let
p = pZ be the corresponding ideal of Z. Then, in the notation of §10.1

r∑
i=1

eifi = n = 2,

and we are thus in one of the following situations,

(a) pOL = q1q2 with q1, q2 distinct primes of OL (r = 2, e1 = e2 = f1 = f2 = 1),
(b) pOL is a prime ideal of OL (r = 1, e1 = 1, f1 = 2),
(c) pOL = q2 for a prime ideal q of OL (r = 1, e1 = 2, f1 = 1).

Definition 10.4.1. According to the three cases distinguished above, we say that
the prime number p

(a) decomposes in OL,
(b) remains prime in OL,
(c) ramifies in OL,

We will use the following explicit description of the ring OL:
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Lemma 10.4.2. Let L = Q(
√
d) be a quadratic field, with d ∈ Z square-free. Consider

the polynomial in Z[X]

Q =

{
X2 − d if d = 2, 3 mod 4

X2 −X − d−1
4 if d = 1 mod 4.

Then we have a ring isomorphism

ϕ : Z[X]/Q
∼−→ OK , X 7→


√
d if d = 2, 3 mod 4

1 +
√
d

2
if d = 1 mod 4.

Proof. Consider the element α ∈ OK defined by

α =

{√
d if d = 2, 3 mod 4

1+
√
d

2 if d = 1 mod 4.

Then a straightforward computation shows that Q(α) = 0, so that the morphism ϕ is
well-defined. Since OK = Z[α] by Theorem 2.2.3, the morphism ϕ is surjective. Let
x ∈ Z[X]/Q be the class of X. We claim that the Z-module Z[X]/Q is generated by
1, x. Indeed since the polynomial Q is monic of degree two, the element x2 is a Z-linear
combination of 1, x. By induction we deduce that, for k ∈ N, the element xk is a Z-linear
combination of 1, x, which implies the claim (because Z[X]/Q is generated by the powers
of x). Now for a, b ∈ Z, the element ϕ(a + bx) = a + bα vanishes only when a = b = 0,
because the family (1, α) is Z-linearly independent by Theorem 2.2.3. It follows that ϕ is
injective, hence bijective. �

Proposition 10.4.3. Let L = Q(
√
d) be a quadratic field, with d ∈ Z square-free.

Let p ∈ N be an odd prime number. Then:

(i) p decomposes in OL if p does not divide d, and d is a square modulo p,
(ii) p remains prime in OL if d is not a square modulo p,

(iii) p ramifies in OL if p divides d.

Proof. We claim that

(10.4.a) OL/pOL ' Fp[X]/(X2 − d).

This is clear from Lemma 10.4.2 when d = 2, 3 mod 4. If d = 1 mod 4, the ring
morphism

ρ : Fp[X]→ Fp[X], X 7→ 2X − 1

is an isomorphism (its inverse is given by X 7→ 1−p
2 (X + 1)). Then

ρ(X2 − d) = (2X − 1)2 − d = 4
(
X2 −X − d− 1

4

)
hence by Lemma 10.4.2 (as 4 is invertible in Fp)

OL/pOL ' Fp[X]/
(
X2 −X − d− 1

4

)
' Fp[X]/(ρ(X2 − d)) ' Fp[X]/(X2 − d),

proving (10.4.a) in this case also.
In any case, the polynomial X2 − d ∈ Fp[X] is the product of two distinct monic

irreducible factors when d ∈ Fp is a nonzero square, irreducible when d ∈ Fp is not a
square, and the square of an irreducible polynomial when d ∈ Fp is zero. In view of
(10.4.a), this means that the ideal pOL in OL is a product of two distinct prime ideals
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when d ∈ Fp is a nonzero square, a prime ideal when d ∈ Fp is not a square, and the
square of a prime ideal when d ∈ Fp is zero. �

Proposition 10.4.4. Let L = Q(
√
d) be a quadratic field, with d ∈ Z square-free.

Then:

(i) 2 decomposes in OL if d is congruent to 1 modulo 8,
(ii) 2 remains prime in OL if d is congruent to 5 modulo 8,

(iii) 2 ramifies in OL if d is congruent to 2 or 3 modulo 4.

Proof. If d = 2, 3 mod 4, then by Lemma 10.4.2 we have a ring isomorphism

OL/2OL ' F2[X]/(X2 − d).

The image of d in F2 is 0 or 1, and in particular is always a square. It follows 2OL is the
square of a prime ideal in OL, hence 2 ramifies in OL in this case.

Assume that d = 1 mod 4. We have by Lemma 10.4.2

OL/2OL ' F2[X]/(X2 −X − δ),
where δ ∈ F2 is the class of (d− 1)/4, that is,

δ =

{
0 ∈ F2 if d = 1 mod 8,

1 ∈ F2 if d = 5 mod 8.

If d = 1 mod 8, then the polynomialX2−X−δ = X2−X−1 has no root in F2 (it takes the
constant value 1 on F2), and this implies that the ring O/2OL is field, which means that 2
remains prime in OL. If d = 5 mod 8, then X2−X−δ = X2−X = X(X−1) ∈ F2[X] is
a product of two distinct monic irreducible polynomials, which implies that 2 decomposes
in OL. �
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CHAPTER 11

Galois extensions of number fields

1. Galois theory

When A is a k-algebra, we denote by Autk−alg(A) the group of isomorphisms of k-
algebras A→ A. When X is a set with an action of a group G, we denote by XG the set
of elements of X fixed by every element of G.

Proposition 11.1.1. Let L/k be a field extension of finite degree. Let G be a subgroup
of Autk−alg(L) such that LG = k. Then G = Autk−alg(L) and card(G) = [L : k].

Proof. We have [L : k] ≥ card(Autk−alg(L)) by Dedekind’s Lemma 4.2.1. In par-
ticular the group Autk−alg(L) (hence also its subgroup G) is finite, and it will suffice to
prove that card(G) ≥ [L : k]. Let M be the set of maps G → L, viewed as an L-algebra
via pointwise operations. Consider the morphism of k-algebras

L→M, x 7→ (g 7→ g(x)).

By the universal property of the tensor product (see §4.3), this extends uniquely to a
morphism of L-algebras

ϕ : L⊗k L→M,

which maps x⊗ y to the map g 7→ g(x)y; here and below we view L⊗k L as an L-vector
space via the second factor.

We are going to show that ϕ is injective. Assume that the kernel of ϕ contains a
nonzero element

v = x1 ⊗ y1 + · · ·+ xr ⊗ yr, where x1, . . . , xr, y1, . . . , yr ∈ L.

Choose r minimal with this property. Observe that then y1 is nonzero. Replacing v with
(1⊗ y−11 )v (which still belongs to the L-subspace kerϕ), we may assume that y1 = 1. In
particular y1 ∈ k ⊂ L.

We claim that the elements x1, . . . , xr ∈ L are k-linearly independent: indeed assume
that

λ1x1 + · · ·+ λrxr = 0, with λ1, . . . , λr ∈ k,
and that s ∈ {1, . . . , r} is such that λs 6= 0. For ease of notation, after renaming the xi’s,
we may assume that s = r. Then xr = −λ−1r (λ1x1 + · · ·+ λr−1xr−1), and so

v =

r−1∑
i=1

xi ⊗ yi +

r−1∑
i=1

(−λ−1r λixi)⊗ yr =

r−1∑
i=1

xi ⊗ (yi − λiλ−1r yr),

which contradicts the minimality of r. The claim is proved.
As v ∈ kerϕ, we have

0 = ϕ(v)(idL) = x1y1 + · · ·+ xryr.
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Since the elements x1, . . . , xr are k-linearly independent, it follows that there exists j ∈
{2, . . . , r} such that yj ∈ L does not lie in k (recall that y1 ∈ k). As k = LG, we may
thus find γ ∈ G such that γ(yj) 6= yj . Consider the element

w = x1 ⊗ γ(y1) + · · ·+ xr ⊗ γ(xr) ∈ L⊗k L.

Then for any g ∈ G, we have

ϕ(w)(g) = g(x1)γ(y1) + · · ·+ g(xr)γ(yr)

= γ
(
γ−1 ◦ g(x1)y1 + · · ·+ γ−1 ◦ g(xr)yr

)
= γ

(
ϕ(v)(γ−1g)

)
= 0,

where the last equality follows from the fact that ϕ(v) = 0. This proves that w ∈ kerϕ,
hence v − w ∈ kerϕ. Since y1 ∈ k we have γ(y1) = y1, and thus

(11.1.a) v − w =

r∑
i=1

xi ⊗ yi −
r∑
i=1

xi ⊗ γ(yi) =

r∑
i=2

xi ⊗ (yi − γ(yi)) ∈ L⊗k L.

Since the elements x1, . . . , xr ∈ L are k-linearly independent, it follows that the elements
x1⊗ 1, . . . , xr ⊗ 1 ∈ L⊗k L are L-linearly independent (exercise). Therefore the quantity
appearing in (11.1.a) is nonzero (recall that γ(yj) − yj 6= 0) and belongs to kerϕ, a
contradiction with the minimality of r. This proves that the L-linear map ϕ is injective,
so that

[L : k] = dimL(L⊗k L) ≤ dimLM = card(G),

as required. �

Remark 11.1.2. In the conditions of Proposition 11.1.1 we have L ⊗k L ' Ln as
L-algebras, where n = [L : k]. Indeed the morphism ϕ appearing in the proof of Propo-
sition 11.1.1 must be surjective by dimensional reasons, and M ' Ln as L-algebras.

Proposition 11.1.3. Let L/k be a field extension of finite degree. The following are
equivalent:

(i) The minimal polynomial over k of every element of L splits into a product of linear
factors in L[X].

(ii) The k-algebra L is generated by elements whose minimal polynomials over k split
into a product of linear factors in L[X].

(iii) Let F/k a field extension. Then all morphisms of k-algebras L→ F have the same
image.

Proof. (i) ⇒ (ii): Clear.
(ii) ⇒ (iii): Consider a set of generators G ⊂ L of the k-algebra L, such that the

minimal polynomial over k every element of G splits into a product of linear factors in
L[X]. Let P ⊂ k[X] be the set of minimal polynomials over k of the elements of G, and
R ⊂ F the set of roots of the elements of P. Let E ⊂ F be the k-subalgebra generated
by R. We prove that E is the common image. Let σ : L → F be a morphism of k-
algebras. If x ∈ G, then σ(x) ∈ F is a root of the minimal polynomial of x over k, hence
σ(x) ∈ R ⊂ E. Since G generates the k-algebra L, it follows that σ(L) ⊂ E. Conversely,
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let y ∈ R, and pick P ∈ P such that P (y) = 0. By the definition of P, we may find
elements x1, . . . , xn ∈ L such that P = (X − x1) · · · (X − xn) in L[X], hence

0 = σ(P (y)) = (σ(P ))(y) = (y − σ(x1)) · · · (y − σ(xn)) ∈ F,

so that y = σ(xi) for some i ∈ {1, . . . , n}. Therefore R ⊂ σ(L), and thus E ⊂ σ(L).
(iii) ⇒ (i): Consider an element x ∈ L and its minimal polynomial P ∈ k[X] over k.

Let E/k be a field extension such that P splits into a product of linear factors in E[X]
(such exists by Proposition 4.1.8), so that

P =

n∏
i=1

(X − αi) ∈ E[X], with α1, . . . , αn ∈ E.

Note that n ≥ 1. Recall that the k-algebra K = k[x] ⊂ L is isomorphic to k[X]/P , and is a
field. For each i ∈ {1, . . . , n}, we may thus define a morphism of k-algebras σi : K → E by
x 7→ αi. By Proposition 4.1.9, we find for each i ∈ {1, . . . , n} a finite field extension Fi/E
and a morphism of k-algebras L→ Fi extending σi. By Corollary 4.1.10, we may find a
finite field extension F/E containing each Fi/E as subextension, for i ∈ {1, . . . , n}. Let

i ∈ {1, . . . , n}. Denoting by τi : L
σi−→ Fi ⊂ F the composite, we have τi(x) = σi(x) = αi

in F . Since τ1(L) = τi(L) ⊂ F by (iii), we may find xi ∈ L such that αi = τ1(xi).
Consider now the polynomial

Q =

n∏
i=1

(X − xi) ∈ L[X].

Then τ1(Q) = P = τ1(P ) in F [X]. Since τ1 is injective, it follows that P = Q ∈ L[X],
and thus P splits into a product of linear factors in L[X]. �

Definition 11.1.4. A field extension L/k of finite degree is called normal if it satisfies
the conditions of Proposition 11.1.3.

Proposition 11.1.5. Let F/k be a field extension of finite degree. The following are
equivalent:

(i) The extension F/k is separable and normal,
(ii) FAutk−alg(F ) = k.

Proof. (i)⇒ (ii) : Let x ∈ F rk, and P ∈ k[X] the minimal polynomial of x over k.
The polynomial P splits into a product of linear factors over F (as F/k is normal), and
has no multiple root (as F/k separable). Since P has degree at least two (as x 6∈ k), we
find y ∈ F such that y 6= x and P (y) = 0. Let K be the subfield of F generated by x over
k. The morphism of k-algebras k[X]/P → K given by X 7→ x is an isomorphism, hence
we can define a morphism of k-algebras K → F by x 7→ y. That morphism extends to a
morphism of k-algebras σ′ : F → F ′, where F ′/F is a field extension by Proposition 4.1.9.
By Proposition 11.1.3, the image of σ′ coincides with the image of the inclusion F ⊂ F ′,
so that σ′(F ) = F ⊂ F ′. The morphism σ′ therefore induces a surjective morphism of
k-algebras σ : F → F . As σ is injective (since F is a field) we have found σ ∈ Autk−alg(F )
such that σ(x) = y 6= x, proving (ii).

(ii) ⇒ (i) : Let x ∈ F . Let S ⊂ F be the set of those elements σ(x) ∈ F , where σ
runs over Autk−alg(F ). The elements of S are among the roots of the minimal polynomial



11. Galois extensions of number fields 100

of x over k, and in particular the set S is finite (alternatively, we know that the group
Autk−alg(F ) is finite by Proposition 11.1.1). Consider the polynomial

(11.1.b) P =
∏
s∈S

(X − s) ∈ F [X].

Every automorphism σ ∈ Autk−alg(F ) permutes the elements of S, so that

σ(P ) =
∏
s∈S

(X − σ(s)) =
∏
s∈S

(X − s) = P.

Thus P = (F [X])Autk−alg(F ) = (FAutk−alg(F ))[X] = k[X]. Since P (x) = 0, the minimal
polynomial of x over k divides P , hence splits into a product of pairwise distinct monic
linear factors in F [X], because P does so by (11.1.b). �

Definition 11.1.6. A finite field extension F/k is called Galois if it satisfies the
conditions of Proposition 11.1.5. Its Galois group Gal(F/k) is defined as the group
Autk−alg(F ).

Lemma 11.1.7. Let F/k be a Galois extension. Then card(Gal(F/k)) = [F : k].

Proof. This follows from Proposition 11.1.1. �

Lemma 11.1.8. If F/k is a Galois extension and E/k a subextension of F/k, then
the extension F/E is Galois.

Proof. Let x ∈ F , and P ∈ k[X], resp. Q ∈ E[X], be the minimal polynomial of x
over k, resp. E. As P ∈ E[X] is such that P (x) = 0, it follows that Q divides P in F [X],
hence Q splits into a product of pairwise distinct monic linear factors in F [X], because
P does so. �

Theorem 11.1.9. Let F/k be a Galois field extension of finite degree.

(i) The associations

E/k 7→ Gal(F/E) ; H 7→ FH

yield inclusion-reversing, mutually inverse bijections between subextensions E/k of
F/k and subgroups H of Gal(F/k).

(ii) A subextension E/k of F/k is Galois if and only if the subgroup Gal(F/E) is normal
in Gal(F/k). In this case, restricting automorphisms induces a group isomorphism

Gal(F/k)/Gal(F/E) ' Gal(E/k).

Proof. (i): Let E/k be a subextension of F/k. Then the field extension F/E is
Galois (Lemma 11.1.8), so that FGal(F/E) = E. Conversely let H ⊂ Gal(F/k) be a
subgroup. Certainly we have H ⊂ Gal(F/FH). Then it follows from Proposition 11.1.1
applied to the extension F/FH and the subgroup H ⊂ Gal(F/FH) that H = Gal(F/FH).

(ii): First, let H be a normal subgroup of Gal(F/k), and E = FH . Let x ∈ E. Then
for any σ ∈ Gal(F/k) and h ∈ H, the automorphism σ−1 ◦ h ◦ σ ∈ Gal(F/k) belongs to
H, hence fixes x. Therefore

h ◦ σ(x) = σ ◦ σ−1 ◦ h ◦ σ(x) = σ(x),

proving that σ(x) ∈ FH = E. Thus the subfield E ⊂ F is stable under the action of
Gal(F/k), so that EAutk−alg(E) ⊂ FGal(F/k) = k. It follows that the extension E/k is
Galois (Proposition 11.1.5).
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Let now E/k be a subextension of F/k, and assume that E/k is Galois. Then E/k is
normal by Proposition 11.1.5, hence every element of Gal(F/k) maps the subfield E ⊂ F
onto itself by Proposition 11.1.3. This permits to define a group morphism

α : Gal(F/k)→ Autk−alg(E), σ 7→ σ|E .
Since Gal(F/E) = kerα, the subgroup Gal(F/E) is normal in Gal(F/k). In addition, the
morphism α induces an injective morphism

Gal(F/k)/Gal(F/E)→ Gal(E/k),

which must also be surjective, because, by Lemma 11.1.7

card(Gal(F/k)/Gal(F/E)) = [F : k]/[F : E] = [E : k] = card(Gal(E/k)). �

Example 11.1.10 (Finite fields). Let k be a finite field, and set q = card(k) ∈ N. Let
L/k be an extension of degree n. Then card(L) = qn. The Frobenius map

(11.1.c) φ : L→ L, x 7→ xq

is a ring morphism (see (4.1.b)). It is injective (as L is a domain), hence surjective by a
cardinality argument. Since k× is a group of order q−1, we have φ(x) = x for all x ∈ k×.
This also holds when x = 0. Therefore every element of k is a root of the polynomial
Xq −X ∈ L[X], and by degree reasons there are no other roots. We have proved that

(11.1.d) k = {x ∈ L|φ(x) = x}.
In particular φ ∈ Autk−alg(L). Let G be the subgroup of Autk−alg(L) generated by

φ. Now it follows from (11.1.d) that LG = k, so that G = Autk(L) and card(G) = n by
Proposition 11.1.1.

In conclusion, the extension L/k is Galois, and its Galois group Gal(L/k) is cyclic of
order n = [L : k], generated by the Frobenius automorphism φ of (11.1.c).

2. Decomposition and inertia groups

In this section A is a Dedekind domain with fraction field K, and L/K is a finite
Galois extension. We let n = [L : K] and G = Gal(L/K). We denote by B the integral
closure of A in L.

Lemma 11.2.1. Every σ ∈ G restricts to a ring isomorphism σB : B
∼−→ B.

Proof. It follows from Lemma 2.1.17 that σ(B) ⊂ B. Therefore σ : L→ L induces
a ring morphism σB : B → B. For the same reason σ−1 : L→ L induces a ring morphism
σ−1B : B → B. Since σB ◦ σ−1B = idB = σ−1B ◦ σB , the lemma follows. �

It follows from Lemma 11.2.1 that the group G acts on the set of prime ideals of B.

Proposition 11.2.2. Let p be a nonzero prime ideal of A. The group G acts transi-
tively on the set of prime ideals of B lying over p.

Proof. Let σ ∈ G. Let q be a prime ideal of B lying over A. Then σ(q) is a prime
ideal of B (because σ induces a ring isomorphism B/q ' B/σ(q)), and

σ(q) ∩A = σ(q) ∩ σ(A) = σ(q ∩A) = σ(p) = p.

Let now q, q′ be prime ideals of B lying over p. We assume that σ(q) 6= q′ for all σ ∈ G,
and come to a contradiction. As the prime ideal q′ is nonzero (Lemma 2.1.19) in the
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Dedekind domain B, it is a maximal ideal. Therefore q′ 6⊂ σ(q) for all σ ∈ G. By prime
avoidance (Lemma 1.1.4), we find an element x ∈ q′ such that x 6∈ σ(q) for all σ ∈ G
(recall that G is finite). Consider the element (Proposition 4.3.3)

NL/K(x) =
∏
σ∈G

σ(x) ∈ K.

As observed above, we have σ(x) ∈ B for all σ ∈ G. It follows that NL/K(x) ∈ xB ⊂ q′.
As NL/K(x) ∈ A by Corollary 5.1.2, we have NL/K(x) ∈ q′ ∩A = p. In particular∏

σ∈G
σ(x) = NL/K(x) ∈ q,

and as the ideal q is prime in B, there exists an element σ ∈ G such that σ(x) ∈ q. Then
x ∈ σ−1(q), a contradiction with the choice of the element x. �

Corollary 11.2.3. Let p be a nonzero prime ideal of A. Let q1, . . . , qg be the prime
ideals of B lying over p. Then

Bp =
( g∏
i=1

qi

)e
and n = efg,

where
f = [(B/q1) : (A/p)] = · · · = [(B/qg) : (A/p)].

Proof. Recall from (10.1.a) (setting r = g) that we may write

Bp =

g∏
i=1

qeii .

Let j, k ∈ {1, . . . , g}. By Proposition 11.2.2 there exists σ ∈ G such that qj = σ(qk). We
have σ(Bp) = Bp, and thus

Bp =

g∏
i=1

σ(qi)
ei .

Observe that σ(q1), . . . , σ(qg) are pairwise distinct nonzero prime ideals of B, hence the
unicity in the decomposition of Theorem 6.3.5, together with the fact that σ(qk) =
qj , implies that ek = ej . We may thus set e = e1 = · · · = eg to obtain the stated
decomposition of the ideal Bp in B.

In addition, the induced isomorphism of A-modules σB : B
∼−→ B descends to an

isomorphism of (A/p)-vector spaces B/qk
∼−→ B/qj (its inverse is induced by (σ−1)B).

This proves that [(B/qk) : (A/p)] = [(B/qj) : (A/p)], hence

[(B/q1) : (A/p)] = · · · = [(B/qg) : (A/p)],

and the formula n = efg follows from Theorem 10.1.8. �

Definition 11.2.4. For a nonzero prime ideal q of B, the subgroup of Gal(L/K)
consisting of those σ such that σ(q) = q is called the decomposition group of q, and is
denoted by Dq.

Remark 11.2.5. Let q of B be a nonzero prime ideal q of B. Then an element
σ ∈ Gal(L/K) belongs to Dq as soon as σ(q) ⊂ q. Indeed σ(q) is a nonzero prime ideal
of OK by Lemma 11.2.1, hence a maximal ideal because B is a Dedekind domain. Thus
σ(q) = q as soon as σ(q) ⊂ q.
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For the rest of this section, we fix a nonzero prime ideal q of B, and set p = q ∩ A.
Then q lies over p.

Lemma 11.2.6. In the notation of Corollary 11.2.3, we have

card(Dq) = ef.

Proof. The group G acts transitively on the set {q1, . . . , qg} of cardinality g, and
Dq is the stabilisator of some element in this set. This implies that

card(Dq) · g = card(G).

But card(G) = n (see Lemma 11.1.7), and n = efg by Corollary 11.2.3. The lemma
follows. �

Every element σ ∈ Dq induces an automorphism σ of the (A/p)-algebra B/q, which
allows us to define a group morphism

(11.2.a) Dq → Aut(A/p)−alg(B/q), σ 7→ σ.

Definition 11.2.7. The kernel of the morphism (11.2.a) is called the inertia group
of q, and is denoted by Iq ⊂ Dq.

Let us set k = A/p and ` = B/q.

Proposition 11.2.8. The following hold:

(i) The field extension `/k is normal.
(ii) Assume that the field extension `/k is separable. Then (11.2.a) induces a surjective

group morphism
Dq → Gal(`/k),

whose kernel is Iq.

Proof. Let us set K ′ = LDq ⊂ L. Then L/K ′ is a Galois extension such that
Gal(L/K ′) = Dq (see Theorem 11.1.9). The integral closure A′ of A in K ′ satisfies
A′ = B ∩K ′. Let p′ = q ∩ A′ and k′ = A′/p′. The Galois group Dq acts transitively on
the set of prime ideals of B lying over p′ (Proposition 11.2.2). Since q is among those
prime ideals, it follows from the definition of Dq that q is the only such prime ideal of B.

We thus have p′B = qe
′

for some integer e′ ∈ N. Let us set

f ′ = [B/q : A′/p′] = [` : k′].

We then have, using successively Corollary 11.2.3, Lemma 11.1.7 and Lemma 11.2.6

e′f ′ = [L : K ′] = cardDq = ef.

Now k ⊂ k′ ⊂ `, and thus
f ′ = [` : k′] ≤ [` : k] = f.

On the other hand
pB ⊂ p′B = qe

′
,

and so e′ ≤ vq(pB) = e. We conclude that we must have e = e′, f = f ′, and so k = k′.

Let y ∈ `, and pick a preimage y ∈ B of y. The characteristic polynomial of y over
K ′ verifies, by Proposition 4.3.3 and Proposition 5.1.1

χL/K′(y) =
∏
σ∈Dq

(X − σ(y)) ∈ A′[X]



11. Galois extensions of number fields 104

Its image in k′[X] = k[X] is a polynomial Q ∈ k[X] such that Q(y) = 0, which splits into
a product of linear factors

(11.2.b) Q =
∏
σ∈Dq

(X − σ(y)) ∈ `[X].

It follows that the minimal polynomial of y ∈ ` over k splits into a product of linear
factors (being a divisor of Q). This proves that the field extension `/k is normal.

Now assume that the field extension `/k is separable. We specialise to the case when
y is a generator of the k-algebra `; such an elements exists by the primitive element
Theorem (Corollary 4.1.19). If τ ∈ Gal(`/k), we thus have Q(τ(y)) = τ(Q(y)) = 0, which
implies that τ(y) is among the elements σ(y) for σ ∈ Dq (those are the roots of Q in `
by (11.2.b)). Since the element y generates the k-algebra `, it follows that τ = σ, which
proves the stated surjectivity. The fact the Iq is the kernel of the given morphism follows
from the Definition 11.2.7. �

Corollary 11.2.9. Assume that the field extension `/k is separable. Then, in the
notation of Corollary 11.2.3, we have card(Iq) = e.

Proof. From Proposition 11.2.8 we obtain a group isomorphism

Dq/Iq ' Gal(`/k),

hence, in view of Lemma 11.1.7 and Lemma 11.2.6,

f · card(Iq) = card(Gal(`/k)) · card(Iq) = card(Dq) = ef,

and so card(Iq) = e. �

Corollary 11.2.10. Let q be a prime ideal of B lying over p. Then the prime ideal
p does not ramify in B if and only Iq = {idL}.

3. The Frobenius automorphism of a number field

In this section K/Q is a finite Galois extension.

Lemma 11.3.1. Let p be a prime number which does not ramify in K, and let p be
a prime ideal of OK lying over pZ. Then there exists a unique element σp ∈ Gal(K/Q)
such that

σp(x)− xp ∈ p for all x ∈ OK .

The element σp belongs to the decomposition subgroup Dp ⊂ Gal(K/Q), and the order of
σp in the group Gal(K/Q) is f = [(OK/p) : Fp].

Proof. By Proposition 11.2.8 and Corollary 11.2.10, we have a group isomorphism

(11.3.a) Dp
∼−→ Gal((OK/p)/Fp),

sending σ ∈ Dp to the automorphism in Gal((OK/p)/Fp) given by

(x mod p) 7→ (σ(x) mod p) for x ∈ OK .

Considering the Frobenius automorphism φ : y 7→ yp in Gal((OK/p)/Fp) (see Exam-
ple 11.1.10), it follows that there exists a unique element σp ∈ Dp such that σp(x) = xp

mod p for all x ∈ OK . Conversely, if σ ∈ Gal(K/Q) is such that σ(x) = xp mod p for
all x ∈ OK then σ(p) ⊂ p, which implies that σ ∈ Dp by Remark 11.2.5. This proves the
first statement.
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In view of the isomorphism (11.3.a), the order of σp coincides with the order of the
Frobenius automorphism φ ∈ Gal((OK/p)/Fp), which equals f by Example 11.1.10. �

Definition 11.3.2. The element given by Lemma 11.3.1 is called the Frobenius au-
tomorphism and is denoted by σp.

Lemma 11.3.3. Let p be a prime number which does not ramify in K, and let p, p′ be
prime ideals of OK lying over pZ. Then there exists τ ∈ Gal(K/Q) such that

σp′ = τσpτ
−1 ∈ Gal(K/Q).

Proof. By Proposition 11.2.2 there exists τ ∈ Gal(K/Q) such that p′ = τ(p). Let
x ∈ OK and set y = τ−1(x) ∈ OK . Then by definition of σp, we have

σp(y)− yp ∈ p.

Therefore the element

τ ◦ σp ◦ τ−1(x)− xp = τ
(
σp ◦ τ−1(x)− τ−1(xp)

)
= τ

(
σp(y)− yp

)
belongs to τ(p) = p′, which implies that τ ◦ σp ◦ τ−1 = σp′ . �

Definition 11.3.4. Assume that group Gal(K/Q) is abelian, and that p does not
ramify in K. Then by Lemma 11.3.3 the Frobenius automorphism σp ∈ Gal(K/Q) is
independent of the choice of the prime ideal p of OK lying over pZ (recall that such does
exist by Remark 10.1.9). In this case, we will write(

K/Q
p

)
= σp ∈ Gal(K/Q).

Lemma 11.3.5. Let K/Q be a finite Galois extension, and F/Q a Galois subextension
of K/Q. Let p be a prime number which does not ramify in K, and p a prime ideal of
OK lying over pZ. Then the Frobenius automorphism σp ∈ Gal(K/Q) restricts to the
Frobenius automorphism σp∩OF

∈ Gal(F/Q).

Proof. Let p′ = p ∩ OF . Note that OF = L ∩ OK , hence p′ = p ∩ F . Write σ = σp.
As σ(p) = p (recall that σ ∈ Dp by Lemma 11.3.1) and σ(F ) = F (as F/Q is normal),
we have

σ(p′) = σ(p ∩ F ) = p ∩ F = p′,

hence the restriction of σ to Gal(F/Q) belongs to the decomposition group Dp′ . For any
x ∈ OF , we have σ(x)− xp ∈ p ∩ F = p′. The lemma follows. �

4. Cyclotomic fields

Lemma 11.4.1. Let L/k be a field extension and ξ ∈ L× be an element of order
m ∈ N r {0}. Assume that L = k(ξ). Then the field extension L/k is Galois, and there
exists an injective group morphism

j : Gal(L/k)→ (Z/mZ)×

such that σ(ξ) = ξj(σ) for any σ ∈ Gal(L/k).

Proof. The powers of ξ are all roots of Xm − 1, and there are m of those. Thus

Xm − 1 =

m−1∏
i=0

(X − ξi) ∈ L[X].
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The minimal polynomial P of ξ over k is a divisor of Xm − 1, hence also splits into a
product of pairwise distinct monic linear factors in L[X]. It follows that the field extension
L/k is normal, and that the polynomial P ∈ k[X] is separable (see Remark 4.1.12). Thus
by Proposition 4.2.6 and Corollary 4.4.7 the extension L/k is separable. We have proved
that the extension L/k is Galois.

Since the k-algebra L is generated by ξ, every element g ∈ Gal(L/k) is determined
by the element g(ξ) ∈ L. Since g(ξ) is a root of the polynomial Xm − 1, there exists a
unique element j(g) ∈ Z/mZ such that g(ξ) = ξj(g). In addition the element g(ξ) ∈ L×
has order m, hence j(g) ∈ (Z/mZ)×. For any g, h ∈ Gal(L/k), it is easy to verify that
j(gh) = j(g)j(h), and j(1) = 1. Therefore j defines an injective ring morphism

j : Gal(L/k)→ (Z/mZ)×. �

We now specialise to the case k = Q. So let us fix an integer m ∈ Nr {0}, and ξ ∈ C
a primitive m-th root of unity (i.e. the element ξ ∈ C× has order m). We investigate the
cyclotomic field K = Q(ξ) ⊂ C.

Lemma 11.4.2. Let d = [K : Q]. Then the absolute discriminant dK divides md.

Proof. Let P ∈ Q[X] be a minimal polynomial of ξ over Q; its degree is d. Since
ξm − 1 = 0, there exists Q ∈ Q[X] such that Xm − 1 = PQ. Note that P,Q ∈ Z[X] by
Proposition 5.2.1. Taking the derivatives yields mXm−1 = P ′Q+Q′P , so that

(11.4.a) mξm−1 = P ′(ξ)Q(ξ).

As ξ ∈ (OK)×, we have NK/Q(ξ) ∈ {1,−1} by Corollary 5.1.3, and thus (11.4.a) yields
(in view of Proposition 3.1.9)

NK/Q(P ′(ξ)) | md.

We conclude using Proposition 4.3.5 that the discriminant DK/Q(1, ξ, . . . , ξd−1) divides

md. Recall that DK/Q(1, ξ, . . . , ξd−1) belongs to the discriminant ideal DOK/Z of Z,
and that this ideal is generated by dK (see Remark 10.2.11). Therefore dK divides
DK/Q(1, ξ, . . . , ξd−1), and thus also divides md. �

Lemma 11.4.3. Let p be a prime number which does not divide m. Then p does not
ramify in K. Consider the Frobenius automorphism (see §11.3; observe that Gal(K/Q)
is abelian by Proposition 11.4.4)

σp =

(
K/Q
p

)
∈ Gal(K/Q).

Then σp(ξ) = ξp.

Proof. By Lemma 11.4.2, the prime number does not divide dK , hence does not
ramify in K by Theorem 10.2.10.

Let p be a prime ideal of OK lying over pZ. By definition of the Frobenius automor-
phism, we have σp(ξ)− ξp ∈ p. On the other hand, we have σp(ξ) = ξs for some s ∈ Z by
Lemma 11.4.1. We thus have

(11.4.b) ξs − ξp ∈ p.

Consider the polynomial

Q = Xm − 1 =

m−1∏
i=0

(X − ξi) ∈ K[X].
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Then

Q′ = mXm−1 =

m−1∑
r=0

∏
i∈{0,...,m−1}r{r}

(X − ξi).

Letting

α =
∏

i∈{0,...,m−1}r{p}

(ξp − ξi) ∈ OK ,

we thus have
Q′(ξp) = mξp(m−1) = α.

If α ∈ p, then
m = αξp(1−m) ∈ p ∩ Z = pZ,

a contradiction with the assumption that p does not divide m. This proves that ξp−ξi 6∈ p
for all i 6= p mod m, and it follows from (11.4.b) that s = p mod m, proving the
lemma. �

Proposition 11.4.4. The field extension K/Q is Galois, and there exists a group
isomorphism

j : Gal(K/Q)
∼−→ (Z/mZ)×

such that σ(ξ) = ξj(σ) for any σ ∈ Gal(K/Q).

Proof. The injective morphism j is provided by Lemma 11.4.1. By Lemma 11.4.3
the image of j contains the class in (Z/mZ)× of each prime number not dividing m. But
every element of (Z/mZ)× is the class of an integer prime to m, hence can be written as a
product of classes of prime numbers not dividing m. This implies that j is surjective. �

5. The law of quadratic reciprocity

Definition 11.5.1. Let p be an odd prime number, and d ∈ Z an integer which is
not divisible by p. The Legendre symbol is defined as(

d

p

)
=

{
1 if d is a square in Fp = Z/pZ,
−1 otherwise.

Remark 11.5.2. It is clear from the definition that(
1

p

)
= 1.

Note that, since p is odd, the elements 1,−1 ∈ F×p are distinct, and we may think of(
d
p

)
as a element of F×p .

Proposition 11.5.3 (Euler’s criterion). Let p be an odd prime number and a ∈ ZrpZ.
Then (

a

p

)
= a

p−1
2 mod p ∈ {1,−1} ⊂ F×p .

Proof. Observe first that, for any b ∈ F×p , the element b
p−1
2 is a root of the poly-

nomial X2 − 1 ∈ Fp[X], hence belongs to {1,−1}. Recall that the group F×p is cyclic
of order p − 1 (see Proposition 1.3.5). Now an element x is of the form 2y in the group
Z/(p − 1)Z if and only if x · p−12 = 0. Thus an element b ∈ F×p is a square if and only if

b
p−1
2 = 1. The proposition follows by letting b be the class of a in Fp. �
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Remark 11.5.4. Proposition 11.5.3 in particular yields(
−1

p

)
= (−1)

p−1
2 =

{
1 if p = 1 mod 4

−1 if p = 3 mod 4.

Corollary 11.5.5. Let p be an odd prime number, and a, b ∈ Z r pZ. Then(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. Since (ab)
p−1
2 = (a

p−1
2 )(b

p−1
2 ), this follows from Proposition 11.5.3. �

Theorem 11.5.6 (Quadratic reciprocity law). Let q be an odd prime number. Then

(i) If p is an odd prime number unequal to p, we have(
q

p

)(
p

q

)
= (−1)

(p−1)(q−1)
4 .

(ii) We have (
2

q

)
= (−1)

q2−1
8 .

Proof. Let ξ ∈ C be a primitive q-th root of unity, andK = Q(ξ) ⊂ C the cyclotomic
field. In view of Proposition 11.4.4, the group Gal(K/Q) is isomorphic to (Z/qZ)× = F×q ,
hence by Proposition 1.3.5 it is cyclic of order q − 1. Since q − 1 is even, it follows that
Gal(K/Q) contains a unique subgroup H of index 2, which by Theorem 11.1.9 means that
K contains a unique quadratic field F . Recall from Proposition 10.3.1 that q is the only
prime number which ramifies in K. By Corollary 10.2.3, we deduce that no prime number
p 6= q ramifies in F , hence the absolute discriminant dF of F is of the form dF = ±qr
with r ∈ N. Let us write F = Q(

√
d) with d ∈ Z square-free. By Example 5.1.10, we

must have d = 1 mod 4, and thus d = dF . As d is square-free and d 6= 1, this implies
that d = q when q = 1 mod 4, and that d = −q when q = 3 mod 4. In other words
F = Q(

√
q∗), where

q∗ = (−1)
q−1
2 q.

Let now p 6= q be a prime number, and consider the Frobenius automorphism (see
§11.3)

σp =

(
K/Q
p

)
∈ Gal(K/Q).

By Proposition 11.4.4, this element belongs to the index 2 subgroup H if and only if
j(σp) ∈ (Z/qZ)× = F×q belongs to the unique subgroup of index 2 in F×q . Since the latter

subgroup consists of the squares in F×q , in view of Lemma 11.4.3 we deduce that σp ∈ H
if and only if p ∈ Fq is a square. Therefore σp restricts to the identity of F if and only if(
p
q

)
= 1. Since, by Lemma 11.3.5, the Frobenius automorphism σp restricts on Gal(F/Q)

to the Frobenius automorphism
(
F/Q
p

)
, it follows that(

F/Q
p

)
= idF ⇐⇒

(
p

q

)
= 1.
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Now by the last sentence of Lemma 11.3.1 the Frobenius automorphism
(
F/Q
p

)
is the

identity when p decomposes in F = Q(
√
q∗), and is nontrivial otherwise. Therefore

(11.5.a)

(
p

q

)
= 1 ⇐⇒

(
the prime number p decomposes in Q(

√
q∗)
)
.

Assume that p 6= 2. By Proposition 10.4.3 and (11.5.a), we deduce that(
p

q

)
=

(
q∗

p

)
.

Thus, in view of Remark 11.5.4 and Corollary 11.5.5,(
p

q

)
=

(
q∗

p

)
=

(
(−1)

q−1
2 q

p

)
=

(
−1

p

) q−1
2
(
q

p

)
= (−1)

(p−1)(q−1)
4

(
q

p

)
which proves (i).

When p = 2, we have by Proposition 10.4.4 and (11.5.a) (recall that by definition
q∗ = 1 mod 4) (

p

q

)
=

{
1 if q∗ = 1 mod 8

−1 if q∗ = 5 mod 8,

which coincides with (−1)
q2−1

8 , proving (i). �

Remark 11.5.7. We obtain an algorithm to compute the Legendre symbol
(
a
p

)
for

an arbitrary integer a prime to p. Indeed first we may assume that 0 ≤ a ≤ p − 1
(since the only the class of a modulo p is relevant). Then by Corollary 11.5.5 (and
Remark 11.5.2), we may assume that a is a prime number. If a = 2, we conclude using

Theorem 11.5.6 (ii). Otherwise, we express
(
a
p

)
in terms of

(
p
a

)
using Theorem 11.5.6 (i),

which can be computed inductively since a is a prime number such that a ≤ p.
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